
Memory in Python

Lecture 9

CS 1110:
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements: Assignment 1

• A1 is graded. If your A1 is not perfect, your first grade is a 1.
 This is a counter for how many times you have submitted.
 It is not a permanent grade, can resubmit.

• In order to give students more chances to revise, the March
2nd resubmit deadline is being extended until Sunday, March
5th 11:59pm

• Review the announcements from the end of Lecture 6 for
policies:

http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/02-14-17/presentation-06.pdf

• Read Section 2.3 of A1 carefully to understand how to revise.

2/28/17 Memory in Python 2

http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/02-14-17/presentation-06.pdf

• Assignment 2 is released
 Due Tuesday, March 7th at 11:59pm
 Involves writing on paper

 Must turn in a legible electronic copy through CMS

• Lab 5 is released (note there is no Lab 4)
• Reading: Section 10.1-10.2, 10.4-10.6
• Prelim conflicts assignment on CMS due

tomorrow because 1st Prelim is March 14th

Announcements

2/28/17 Memory in Python 3

Storage in Python

• Global Space
 What you “start with”
 Stores global variables
 Also modules & functions!
 Lasts until you quit Python

• Call Frame
 Variables in function call
 Deleted when call done

• Heap Space
 Where “folders” are stored
 Have to access indirectly

2/28/17 Memory in Python 4

id2p

id2

1.0
Point3

x

incr_x

id2q

Global Space

Call Frame

2.0y 3.0x

Heap Space

Memory and the Python Tutor

2/28/17 Memory in Python 5

Global
Space

Call Frame

Heap
Space

Functions and Global Space

• A function definition…
 Creates a global variable

(same name as function)
 Creates a folder for body
 Puts folder id in variable

• OPT Link: https://goo.gl/iBfxyo

def to_celsius(x):

return 5*(x-32)/9.0

2/28/17 Memory in Python 6

Global Space

id6to_celsius

Heap Space

id6

Body

function

Body

https://goo.gl/iBfxyo

Modules and Global Space

import math

2/28/17 Memory in Python 7

Global Space

id5mathHeap Space

id5
module

• import…
 Creates a global variable

(same name as module)

 Puts contents in a folder

• variables, functions

 Puts folder id in variable

• from dumps contents to
global space

• OPT: https://goo.gl/4LYvwl

pi 3.141592

e 2.718281

functions

https://goo.gl/4LYvwl

Modules vs Objects

Module Object

2/28/17 Memory in Python 8

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

id2

id2math

module

pi 3.141592

e 2.718281

functions math.pi
math.cos(1)

p.x
p.distanceTo(q)

Frames and Helper Functions

• Functions can call each other!
• Each call creates a new call frame
• Function that exists mainly to call other

functions is often called a helper function

2/28/17 Memory in Python 9

From before: last_name_first

def last_name_first(n):
"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names.
No leading or trailing spaces."""

space_index = n.find(' ')
first = n[:space_index]
last = n[space_index+1:].strip()
return last+', '+first

• last_name_first('Erik Andersen') gives 'Andersen, Erik'
• last_name_first('Erik Andersen') gives ' Andersen, Erik'

1
2
3
4

2/28/17 Memory in Python 10

Frames and Helper Functions

def first_name(s):
"""Prec: see last_name_first"""
end = s.find(' ')
return s[0:end]

def last_name(s):
"""Prec: see last_name_first"""
end = s.rfind(' ')
return s[end+1:]

2/28/17 Memory in Python 11

4
5

6
7

rfind gets the last instance of substring

Frames and Helper Functions

def first_name(s):
"""Prec: last_name_first"""
end = s.find(' ')
return s[0:end]

def last_name(s):
"""Prec: see last_name_first"""
end = s.rfind(' ')
return s[end+1:]

2/28/17 Memory in Python 12

4
5

6
7

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + ',' + first

1
2
3

Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first"""
end = s.find(' ')
return s[0:end]

2/28/17 Memory in Python 13

1
2
3

4
5

Call: last_name_first('Erik Andersen'):

last_name_first 1

'Erik Andersen's

Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first"""
end = s.find(' ')
return s[0:end]

2/28/17 Memory in Python 14

1
2
3

last_name_first 1

s

first_name

'Erik Andersen's

4

4
5

'Erik Andersen'

Call: last_name_first('Erik Andersen'):
Not done. Do not erase!

Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first"""
end = s.find(' ')
return s[0:end]

2/28/17 Memory in Python 15

1
2
3

last_name_first 1

s

first_name

s

end 4

5

4
5

'Erik Andersen'

'Erik Andersen'

Call: last_name_first('Erik Andersen'):

Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first"""
end = s.find(' ')
return s[0:end]

2/28/17 Memory in Python 16

last_name_first 1

1
2
3

s

first_name

s

end 4

RETURN 'Erik'

4
5

'Erik Andersen'

'Erik Andersen'

Call: last_name_first('Erik Andersen'):

What happens next?

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + ',' + first

2/28/17 Memory in Python 17

last_name_first 1

1

2

3

s

first_name

s

end 4

RETURN 'Erik'

'Erik Andersen'

'Erik Andersen'

Call: last_name_first('Erik Andersen'):

last_name_first 2

Stuff

A:

ERASE FRAME #2

last_name_first 2

Stuff

B:

first_name

Stuff

C: ERASE FRAME #1
ERASE FRAME #2

last_name_first 2

s

Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first"""
end = s.find(' ')
return s[0:end]

2/28/17 Memory in Python 18

1
2
3

first 'Erik'

4
5

'Erik Andersen'

Call: last_name_first('Erik Andersen'):

Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)
last = last_name(s)
return last + '.' + first

def last_name(s):
"""Prec: see last_name_first"""
end = s.rfind(' ')
return s[end+1:]

2/28/17 Memory in Python 19

1
2
3

last_name_first 2

s

last_name

s

first

6

6
7

'Erik Andersen'

'Erik'

'Erik Andersen'

Call: last_name_first('Erik Andersen'):

The Call Stack

• Functions are “stacked”
 Cannot remove one above

w/o removing one below
 Sometimes draw bottom up

(better fits the metaphor)
• Python must keep the entire

stack in memory
 Error if it cannot hold stack

2/28/17 Memory in Python 20

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6Frame 5

calls

calls

calls

calls

The Call Stack

• Functions are “stacked”
 Cannot remove one above

w/o removing one below
 Sometimes draw bottom up

(better fits the metaphor)
• Python must keep the entire

stack in memory
 Error if it cannot hold stack

2/28/17 Memory in Python 21

Frame 1

Frame 2

Frame 3

Frame 4

calls

calls

calls

The Call Stack

• Functions are “stacked”
 Cannot remove one above

w/o removing one below
 Sometimes draw bottom up

(better fits the metaphor)
• Python must keep the entire

stack in memory
 Error if it cannot hold stack

2/28/17 Memory in Python 22

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6

calls

calls

calls

calls

Example

2/28/17 Memory in Python 23

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x+y

print function_1(1,0)

calls

calls

OPT Link: https://goo.gl/ckBJh9

calls

https://goo.gl/ckBJh9

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y

print function_1(1,0)

Crashes here
(division by 0)

2/28/17 Memory in Python 24

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

print function_1(1,0)

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print function_1(1,0)

File "error.py", line 7, in function_1
return function_2(x,y)

File "error.py", line 11, in function_2
return function_3(x,y)

File "error.py", line 15, in function_3
return x/y

Make sure you can see
line numbers in Komodo.

Preferences  Editor2/28/17 Memory in Python 25

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

print function_1(1,0)

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print function_1(1,0)

File "error.py", line 7, in function_1
return function_2(x,y)

File "error.py", line 11, in function_2
return function_3(x,y)

File "error.py", line 15, in function_3
return x/y

Make sure you can see
line numbers in Komodo.

Preferences  Editor

Where error occurred
(or where was found)

Script code.
Global space

2/28/17 Memory in Python 26

assert statement

• Format: assert <boolean expression>
 Throws error if <boolean expression> is False

• assert <boolean expression>, <error message>
 Same thing but prints <error message>
 Useful if you want to know what happened

2/28/17 Memory in Python 27

asserting preconditions

• Useful purpose of assert: assert preconditions
• Throws error if precondition violated

2/28/17 Memory in Python 28

def exchange(from_c, to_c, amt)
"""Returns: amt from exchange

Precondition: amt is a number…"""
assert type(amt) == float or type(amt) == int
…

Recovering from Errors

• try-except blocks allow us to recover from errors
 Executes code beneath try
 Once an error occurs, jump to except

• Example:
try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except:
print 'Hey! That is not a number!'

might have
an error

executes if error
happens

2/28/17 29Memory in Python

Comparison

if-else

• if vs. else depends on
Boolean expression

• Never executes both branches

try-except

• Always does try
• May not finish try if there is

an error
 then goes to except

2/28/17 Memory in Python 30

Try-Except is Very Versatile

def isfloat(s):
"""Returns: True if string s
represents a number"""
try:

x = float(s)
return True

except:
return False

2/28/17 Memory in Python 31

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
 Starts from the stack bottom
 Continues until it sees that

current line is in a try-block
 Jumps to except, and then

proceeds as if no error

2/28/17 Memory in Python 32

function_1

function_2

function_3
pops

pops
line in a try

Try-Except and the Call Stack

recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
 Starts from the stack bottom
 Continues until it sees that

current line is in a try-block
 Jumps to except, and then

proceeds as if no error
• Example:

>>> print function_1(1,0)
inf
>>>

2/28/17 Memory in Python 33

No traceback!

How to return
∞ as a float.

Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

2/28/17 Memory in Python 34

Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(0)?

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

2/28/17 Memory in Python 35

	Memory in Python
	Announcements: Assignment 1
	Announcements
	Storage in Python	
	Memory and the Python Tutor
	Functions and Global Space
	Modules and Global Space
	Modules vs Objects
	Frames and Helper Functions
	From before: last_name_first
	Frames and Helper Functions
	Frames and Helper Functions
	Frames and Helper Functions
	Frames and Helper Functions
	Frames and Helper Functions
	Frames and Helper Functions
	What happens next?
	Frames and Helper Functions
	Frames and Helper Functions
	The Call Stack
	The Call Stack
	The Call Stack
	Example
	Errors and the Call Stack
	Errors and the Call Stack
	Errors and the Call Stack
	assert statement
	asserting preconditions
	Recovering from Errors
	Comparison
	Try-Except is Very Versatile
	Try-Except and the Call Stack
	Try-Except and the Call Stack
	Tracing Control Flow
	Tracing Control Flow

