
Memory in Python

Lecture 9

CS 1110: 
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]



Announcements: Assignment 1

• A1 is graded. If your A1 is not perfect, your first grade is a 1.
 This is a counter for how many times you have submitted.
 It is not a permanent grade, can resubmit.

• In order to give students more chances to revise, the March 
2nd resubmit deadline is being extended until Sunday, March 
5th 11:59pm

• Review the announcements from the end of Lecture 6 for 
policies:

http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/02-14-17/presentation-06.pdf

• Read Section 2.3 of A1 carefully to understand how to revise.
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http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/02-14-17/presentation-06.pdf


• Assignment 2 is released
 Due Tuesday, March 7th at 11:59pm
 Involves writing on paper

 Must turn in a legible electronic copy through CMS

• Lab 5 is released (note there is no Lab 4)
• Reading: Section 10.1-10.2, 10.4-10.6
• Prelim conflicts assignment on CMS due 

tomorrow because 1st Prelim is March 14th

Announcements
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Storage in Python

• Global Space
 What you “start with”
 Stores global variables
 Also modules & functions!
 Lasts until you quit Python

• Call Frame
 Variables in function call
 Deleted when call done

• Heap Space
 Where “folders” are stored
 Have to access indirectly
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Memory and the Python Tutor
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Functions and Global Space

• A function definition…
 Creates a global variable

(same name as function)
 Creates a folder for body
 Puts folder id in variable

• OPT Link: https://goo.gl/iBfxyo

def to_celsius(x):

return 5*(x-32)/9.0
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Modules and Global Space

import math
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Modules vs Objects

Module Object
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Frames and Helper Functions

• Functions can call each other!
• Each call creates a new call frame
• Function that exists mainly to call other 

functions is often called a helper function
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From before: last_name_first

def last_name_first(n):
"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names. 
No leading or trailing spaces."""

space_index = n.find(' ')
first = n[:space_index]
last  = n[space_index+1:].strip()
return last+', '+first

• last_name_first('Erik Andersen') gives 'Andersen, Erik'
• last_name_first('Erik      Andersen') gives  ' Andersen, Erik'

1
2
3
4
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Frames and Helper Functions

def first_name(s):
"""Prec: see last_name_first""" 
end = s.find(' ')
return s[0:end]

def last_name(s):
"""Prec: see last_name_first""" 
end = s.rfind(' ')
return s[end+1:]
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Frames and Helper Functions

def first_name(s):
"""Prec: last_name_first""" 
end = s.find(' ')
return s[0:end]

def last_name(s):
"""Prec: see last_name_first""" 
end = s.rfind(' ')
return s[end+1:]
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def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + ',' + first

1
2
3



Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first""" 
end = s.find(' ')
return s[0:end]
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last_name_first 1

'Erik Andersen's



Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first""" 
end = s.find(' ')
return s[0:end]
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Not done.  Do not erase!



Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first""" 
end = s.find(' ')
return s[0:end]

2/28/17 Memory in Python 15

1
2
3

last_name_first 1

s

first_name

s

end 4

5

4
5

'Erik Andersen'

'Erik Andersen'

Call: last_name_first('Erik Andersen'):



Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first""" 
end = s.find(' ')
return s[0:end]
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What happens next?

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + ',' + first
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Stuff
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last_name_first 2

s

Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + ',' + first

def first_name(s):
"""Prec: see last_name_first""" 
end = s.find(' ')
return s[0:end]
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Frames and Helper Functions

def last_name_first(s):
"""Precondition: s in the form
<first-name> <last-name>""" 
first = first_name(s)
last = last_name(s)
return last + '.' + first

def last_name(s):
"""Prec: see last_name_first""" 
end = s.rfind(' ')
return s[end+1:]
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The Call Stack

• Functions are “stacked”
 Cannot remove one above 

w/o removing one below
 Sometimes draw bottom up

(better fits the metaphor)
• Python must keep the entire 

stack in memory
 Error if it cannot hold stack

2/28/17 Memory in Python 20

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6Frame 5

calls

calls

calls

calls



The Call Stack

• Functions are “stacked”
 Cannot remove one above 

w/o removing one below
 Sometimes draw bottom up

(better fits the metaphor)
• Python must keep the entire 

stack in memory
 Error if it cannot hold stack
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The Call Stack

• Functions are “stacked”
 Cannot remove one above 

w/o removing one below
 Sometimes draw bottom up

(better fits the metaphor)
• Python must keep the entire 

stack in memory
 Error if it cannot hold stack
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Example
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def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x+y

print function_1(1,0)

calls

calls

OPT Link: https://goo.gl/ckBJh9

calls

https://goo.gl/ckBJh9


Errors and the Call Stack

# error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y

print function_1(1,0)

Crashes here 
(division by 0)
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Errors and the Call Stack

# error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

print function_1(1,0)

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print function_1(1,0)

File "error.py", line 7, in function_1
return function_2(x,y)

File "error.py", line 11, in function_2
return function_3(x,y)

File "error.py", line 15, in function_3
return x/y

Make sure you can see 
line numbers in Komodo. 

Preferences  Editor2/28/17 Memory in Python 25



Errors and the Call Stack

# error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

print function_1(1,0)

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print function_1(1,0)

File "error.py", line 7, in function_1
return function_2(x,y)

File "error.py", line 11, in function_2
return function_3(x,y)

File "error.py", line 15, in function_3
return x/y

Make sure you can see 
line numbers in Komodo. 

Preferences  Editor

Where error occurred 
(or where was found)

Script code.
Global space
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assert statement

• Format: assert <boolean expression>
 Throws error if <boolean expression> is False

• assert <boolean expression>, <error message>
 Same thing but prints <error message>
 Useful if you want to know what happened
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asserting preconditions

• Useful purpose of assert: assert preconditions
• Throws error if precondition violated
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def exchange(from_c, to_c, amt)
"""Returns: amt from exchange

Precondition: amt is a number…"""
assert type(amt) == float or type(amt) == int
…



Recovering from Errors

• try-except blocks allow us to recover from errors
 Executes code beneath try
 Once an error occurs, jump to except

• Example:
try:

input = raw_input() # get number from user
x = float(input)        # convert string to float
print 'The next number is '+str(x+1)

except:
print 'Hey! That is not a number!'

might have 
an error

executes if error 
happens
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Comparison

if-else

• if vs. else depends on 
Boolean expression

• Never executes both branches

try-except

• Always does try
• May not finish try if there is 

an error
 then goes to except
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Try-Except is Very Versatile

def isfloat(s):
"""Returns: True if string s 
represents a number"""
try:

x = float(s)
return True

except:
return False

2/28/17 Memory in Python 31

Conversion to a 
float might fail

If attempt succeeds,
string s is a float 

Otherwise, it is not



Try-Except and the Call Stack

# recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf') 

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
 Starts from the stack bottom
 Continues until it sees that 

current line is in a try-block
 Jumps to except, and then 

proceeds as if no error 
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Try-Except and the Call Stack

# recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf') 

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
 Starts from the stack bottom
 Continues until it sees that 

current line is in a try-block
 Jumps to except, and then 

proceeds as if no error 
• Example:

>>> print function_1(1,0)
inf
>>>
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No traceback!

How to return
∞ as a float.



Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'
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Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(0)?

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'
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