
2/27/2017

1

• A1 is graded. If your A1 is not perfect, your first grade is a 1.
 This is a counter for how many times you have submitted.

 It is not a permanent grade, can resubmit until March 2nd.

• Review the announcements from the end of Lecture 6 for
policies:

http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/02-14-17/presentation-06.pdf

• Read section 2.3 of A1 carefully to understand how to revise.

• Lab 5 is released (note there is no Lab 4)

• Reading: Section 10.1-10.2, 10.4-10.6

Lecture 9 Announcements Modeling Storage in Python

• Global Space
 What you “start with”

 Stores global variables

 Also modules & functions!

 Lasts until you quit Python

• Call Frame
 Variables in function call

 Deleted when call done

• Heap Space
 Where “folders” are stored

id2p

id2

1.0

Point3

x

incr_x

id2q

Global Space

Call Frame

2.0y 3.0x

Heap Space

Memory and the Python Tutor

Global
Space

Call Frame

Heap
Space

Frames and Helper Functions

def last_name_first(s):

"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)

last = last_name(s)

return last + ',' + first

def first_name(s):

"""Prec: see last_name_first"""

end = s.find(' ')

return s[0:end]

1

2

3

1

2

Call: last_name_first('Walker White'):

last_name_first 1

'Walker White's

first_name

'Walker White's

1

2

'Walker White's

Frames and Helper Functions

def last_name_first(s):

"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)

last = last_name(s)

return last + ',' + first

def first_name(s):

"""Prec: see last_name_first"""

end = s.find(' ')

return s[0:end]

1

2

3

1

2

first 'Walker'

Call: last_name_first('Walker White'):

last_name_first

Frames and Helper Functions

def last_name_first(s):

"""Precondition: s in the form
<first-name> <last-name>"""
first = first_name(s)

last = last_name(s)

return last + '.' + first

def last_name(s):

"""Prec: see last_name_first"""

end = s.rfind(' ')

return s[end+1:]

1

2

3

1

2

Call: last_name_first('Walker White'):

last_name_first 2

'Walker White's

last_name

'Walker White's

first 'Walker'

1

2/27/2017

2

The Call Stack

• Functions are “stacked”
 Cannot remove one above

w/o removing one below

 Sometimes draw bottom up
(better fits the metaphor)

• Stack represents memory
as a “high water mark”
 Must have enough to keep the

entire stack in memory

 Error if cannot hold stack

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6Frame 5

calls

calls

calls

calls

Online Python Tutor Example

Global
Space

Call Stack

Errors and the Call Stack

error.py

def function_1(x,y):

return function_2(x,y)

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

print function_1(1,0)

Crashes produce the call stack:

Traceback (most recent call last):

File "error.py", line 20, in <module>

print function_1(1,0)

File "error.py", line 8, in function_1

return function_2(x,y)

File "error.py", line 12, in function_2

return function_3(x,y)

File "error.py", line 16, in function_3

return x/y

Make sure you can see
line numbers in Komodo.

Preferences  Editor

Errors and the Call Stack

error.py

def function_1(x,y):

return function_2(x,y)

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

print function_1(1,0)

Crashes produce the call stack:

Traceback (most recent call last):

File "error.py", line 20, in <module>

print function_1(1,0)

File "error.py", line 8, in function_1

return function_2(x,y)

File "error.py", line 12, in function_2

return function_3(x,y)

File "error.py", line 16, in function_3

return x/y

Make sure you can see
line numbers in Komodo.

Preferences  Editor

Where error occurred
(or where was found)

Script code.
Global space

Try-Except is Very Versatile

def isfloat(s):

"""Returns: True if string s
represents a float"""

try:

x = float(s)

return True

except:

return False

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

Try-Except and the Call Stack

recover.py

def function_1(x,y):

try:

return function_2(x,y)

except:

return float('inf')

def function_2(x,y):

return function_3(x,y)

def function_3(x,y):

return x/y # crash here

• Error “pops” frames off stack
 Starts from the stack bottom

 Continues until it sees that
current line is in a try-block

 Jumps to except, and then
proceeds as if no error

function_1

function_2

function_3
pops

pops

line in a try

