Announcements

* Announcements will be made in lecture about:
= Lab3
= Assignment 1
= Extra help
« Details were not finalized when this handout
went to press.
* BE SURE TO CHECK THE LECTURE
SLIDES FOR TODAY, at:

http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/index.php

Anatomy of a Specification

One line description,
def greet(n): followed by blank line

""Prints a greeting to the name n

) More detail about the
Greeting has format 'Hello <=7 function. It may be

Followed by conversation starte_Many paragraphs.

Parameter n: person to greet— Farameter description

Precondition: n is a string™"
print 'Hello '+n+'"’
print 'How are you?'

Precondition specifies
assumptions we make
about the arguments

Anatomy of a Specification

“Returns” indicates a
def to_centigrade(x): fruitful function

x converted to centig

Value returned has type float:

More detail about the
function. It may be
many paragraphs.

Parameter x: temp in Fahrenhejt —
" . Parameter description
Precondition: x is a float

return 5*(x-32)/9.0

Precondition specifies
assumptions we make
about the arguments

Preconditions

 Precondition is a promise >>>to_centigrade(32)
= |f precondition is true, 0.0

the function works >>> to_centigrade(212)
= If precondition is false, 100.0
no guarantees at all ’
» Get software bugs when

= Function precondition is
not documented properly

>>>to_centigrade('32")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "temperature.py", line 19 ...

= Function is used in ways TypeError: unsupported operand

that violates precondition type(s) for -: 'str' and ‘int’
Precondition violated

Test Cases: Finding Errors

* Bug: Errorin a program. (Always expect them!)

» Debugging: Process of finding bugs and removing them.

e Testing: Process of analyzing, running program, looking for bugs.
» Test case: A set of input values, together with the expected output.

Get in the habit of writing test cases for a function from the function’s
specification — even before writing the function’s body.

def number_vowels(w):
""" Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters™™
pass # nothing here yet!

Representative Tests

» Cannot test all inputs
= “Infinite” possibilities
 Limit ourselves to tests

Representative Tests for
number_vowels(w)

that are representative » Word with just one vowel
= Each test is a significantly = For each possible vowel!
different input « Word with multiple vowels

= Every possible input is
similar to one chosen

* Anart, not a science
= |f easy, never have bugs
= Learn with much practice

= Of the same vowel

= Of different vowels
* Word with only vowels
Word with no vowels

Running Example

Unit Test: A Special Kind of Script

» The following function has a bug:
def last_name_first(n):
"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""

end_first = n.find(' ")
first = n[:end_first]
last = n[end,—f”s.tﬂ:] Look at precondition
return lasts, “+rst when choosing tests

» Representative Tests:

= last_name_first(Erik Andersen’) gives 'Andersen, Erik’
= last_name_first(‘Andersen Erik’) gives '‘Andersen, Erik’

* A unit test is a script that tests another module
= It imports the other module (so it can access it)
= It imports the cornelltest module (for testing)

= |t defines one or more test cases
« A representative input
* The expected output

» The test cases use the cornelltest function

def assert_equals(expected,received):
""Quit program if expected and received differ""

cornelltest module

Testing last_name_first(n)

 Contains useful testing functions
» Need to download it and put in same folder as other files

 Available at:
http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/02-14-17/modules/cornelltest.py

import name # The module we want to test
import cornelltest # Includes the test procedures

Actual Output
FI”_«eSt case

result = name.last_name_first('Erik Andersen’)
cornelltest.assert_equals(‘Andersen, Erik’, result)
Second test case = sl UL
result = name.last_name_first('Erik Andersen’)
cornelltest.assert_equals('Andersen, Erik’, result)

print 'Module name is working correctly'

Using Test Procedures

Test Procedure

* Inthe real world, we have a lot of test cases
= Must cleanly organize them
« Idea: Put test cases inside another procedure
= Each function tested gets its own procedure
= Procedure has test cases for that function
= Also some print statements (to verify tests work)
 Turn tests on/off by calling the test procedure

def test_last_name_first():
""" Test procedure for last_name_first(n)""”
print 'Testing function last_name_first’
result = name.last_name_first('Erik Andersen’)
cornelltest.assert_equals('Andersen, Erik', result)
result = name.last_name_first('Andersen Erik")
cornelltest.assert_equals(‘Andersen, Erik’, result)

Execution of the testing code
tes[_|as{_name_ﬁrst()/[No tests happen if you forget this}
print 'Module name is working correctly'

