CS 1110:
 Introduction to Computing Using Python

Lecture 2

Variables \& Assignment

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

- We want to understand what lab sections are in demand.
- NO PROMISES.
- If you are still unable to get into a lab section:
- Email up to three preferred sections to:
- Ms. Jenna Edwards: jls478@cornell.edu
- Use subject:
- "CS1110 - cannot register, lab preferences"
- "CS1110 - registered, lab switch preferences"
- Deadline: Wed. 3pm

Course Website

- www.cs.cornell.edu/courses/cs1110/2017sp/
- LOOK FOR THE SPRING 2017 BAT!!!

- If no bat, you are looking at the wrong year

Things to Do Before Next Class

Read Textbook

Lab 1

- Chapter 1 (browse)
- Chapter 2 (in detail)
- Chapter 3.1-3.4
- Go to your registered section
- Complete lab handout
- Have one week to complete
- Show to TA by end of lab, or:
- Show in consulting hours up to the day before your lab, or:
- Show to TA within first 10 minutes of next week’s lab

Helping You Succeed in this Class

- Consultants. ACCEL Lab Green Room
- Daily office hours (see website) with consultants
- Very useful when working on assignments
- AEW Workshops. Additional discussion course
- Runs parallel to this class - completely optional
- See website; talk to advisors in Olin 167.
- Piazza. Online forum to ask and answer questions
- Office Hours. Talk to the professors!

From last time: Types

Type: set of values and the operations on them

- Type int:
- Values: integers
- Ops: +, -, *, /, \%, **
- Type float:
- Values: real numbers
- Ops: +, -, *, /, **
- Type bool:
- Values: True and False
- Ops: not, and, or

Converting From One Type To Another

- Command: <type>(<value>)
- float(2) converts value 2 to type float (value now 2.0)
- int(2.6) converts value 2.6 to type int (value now 2)
- This kind of conversion is also called "casting"
- This is DIFFERENT from type(<value>)
- type(< value>) tells you the type
- <type>(< value>) converts the type

Implicit (Automatic) Conversions

- Python sometimes converts types automatically
- Example: 1/2.0
- evaluates to a float: 0.5
- internally:
- Step 1: Python casts 1 (an int) to 1.0 (a float)
- Step 2: Python evaluates 1.0/2.0
- Behavior depends on whether the conversion is narrowing or widening

Variable "width"

- Types differ in how much information they hold
- Can convert without losing information?
- float to int (e.g. 4.7 to 4) \longleftarrow information lost
- int to float (e.g. 4 to 4.0)
 seems ok
- "Wide" = more information capacity
- From narrow to wide: bool \Rightarrow int \Rightarrow float

Widening Conversion

- from a narrower type to a wider type
- Python does automatically if needed:
- Example: 1/2.0 evaluates to a float: 0.5
- Example: True + 1 evaluates to an int: 2
- True converts to 1
- False converts to 0
- Note: does not work for string
" Example: 2 + "ab" produces an error

Narrowing Conversion

- from a wider type to a narrower type
- Example: int(2.6)
- causes information to be lost
- Python never does this automatically
- Note: you can just always cast
- Instead of $1 / 2.0$, can write float(1)/2.0

Operator Precedence

- What is the difference between the following?
- 2*(1+3) add, then multiply
- 2* $1+3$ multiply, then add
- Operations are performed in a set order
- Parentheses make the order explicit
- What happens when there are no parentheses?
- Operator Precedence: The fixed order Python processes operators in absence of parentheses

Precedence of Python Operators

- Exponentiation: **
- Unary operators: + -
- Binary arithmetic: * / \%
- Binary arithmetic: + -
- Comparisons: < > <= >=
- Equality relations: == !=
- Logical not
- Logical and
- Logical or
- Precedence goes downwards
- Parentheses highest
- Logical ops lowest
- Same line = same precedence
- Read "ties" left to right
- Example: $1 / 2 * 3$ is $(1 / 2) * 3$
- Section 2.7 in your text
- See website for more info
- Major portion of Lab 1

Operators and Type Conversions

Evaluate this Expression:

False $+1+3.0 / 3$

A. 3
B. 3.0
C. 1.3333
D. 2
E. 2.0

Operator Precedence

- Exponentiation: **
- Unary operators: + -
- Binary arithmetic: * / \%
- Binary arithmetic: + -
- Comparisons: < > <= >=
- Equality relations: == !=
- Logical not
- Logical and
- Logical or

Operators and Type Conversions

Evaluate this Expression:

False $+1+3.0 / 3$

False $+1+1.0$
$1+1.0$
2.0

Operator Precedence

- Exponentiation: **
- Unary operators: + -
- Binary arithmetic: * / \%
- Binary arithmetic: + -
- Comparisons: < > <= >=
- Equality relations: == !=
- Logical not
- Logical and
- Logical or

New Tool: Variable Assignment

- An assignment statement takes a value and stores it in a variable
- Example: x = 5

variable
equals sign
value
(just one!)

Executing Assignment Statements

>>> $\mathrm{x}=5$
Press ENTER and...
Hm, looks like nothing happened...

- But something did happen!
- Python assigned the value 5 to the variable x
- Internally (and invisible to you):
memory location stored value

Retrieving Variables

>>> $\mathrm{x}=5$

\ggg

Retrieving Variables

$\ggg x=5$
>>> X
5

>>>

In More Detail: Variables (Section 2.1)

- A variable
- is a named memory location (box)
- contains a value (in the box)

- Examples:

Variable names must start with a letter (or _).

Variable \mathbf{x}, with value 5 (of type int)

area	20.1	Variable area, $\mathrm{w} /$ value 20.1 (of type float)

1 e 2 is a float, but e2 is a variable name

In More Detail: Statements

>>> $\mathrm{x}=5$
Press ENTER and...
Hm, looks like nothing happened...

- This is a statement, not an expression
- Tells the computer to DO something (not give a value)
- Typing it into >>> gets no response (but it is working)

Expressions vs. Statements

Expression

Statement

- Represents something
- Python evaluates it
- End result is a value
- Examples:
- 2.3

Value

- Does something
- Python executes it
- Need not result in a value
- Examples:
- $x=5$
- $(3+5) / 4 \underset{\text { Complex Expression }}{ }$

Variables in Expressions

$\ggg x=5$

So Python evaluates it
\ggg

Variables in Expressions

$\ggg x=5$

So Python evaluates it
$\ggg+5$
10
>>>

Variables in Expressions

$$
\begin{aligned}
& \ggg x=5 \\
& \ggg x \\
& 5 \ll \\
& \ggg x+5 \\
& 10 \\
& \ggg x * * 2+x-1 \\
& 29 \\
& \ggg
\end{aligned}
$$

Assignment Statements with Expressions

$$
\ggg x=5
$$

$$
\ggg x=x+2
$$

Python evaluates this expression first...
... then assigns the result to the variable

Keeping Track of Variables

- Draw boxes on pieces of paper:
x 5
- If a new variable is declared, write a new box:
x 5
y 5
- If a variable is updated, cross it out:

$$
\times 7
$$

y 5

Execute the Statement: $x=x+2$

- Draw variable x on piece of paper:
x 5

Execute the Statement: $x=x+2$

- Draw variable x on piece of paper:

- Step 1: evaluate the expression $\mathrm{x}+2$
- For x, use the value in variable x
- Write the expression somewhere on your paper

Execute the Statement: $x=x+2$

- Draw variable x on piece of paper:

```
x 5
```

- Step 1: evaluate the expression $x+2$
- For x, use the value in variable x
- Write the expression somewhere on your paper
- Step 2: Store the value of the expression in x
- Cross off the old value in the box
- Write the new value in the box for x

Execute the Statement: $x=x+2$

- Draw variable x on piece of paper:

$$
x 5
$$

- Step 1: evaluate the expression $x+2$
- For x, use the value in variable x
- Write the expression somewhere on your paper
- Step 2: Store the value of the expression in x
- Cross off the old value in the box
- Write the new value in the box for x
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Which One is Closest to Your Answer?

Which One is Closest to Your Answer?

Execute the Statement: x = 3.0 * $\mathrm{x}+1.0$

- You have this:

Execute the Statement: x = 3.0 * $\mathrm{x}+1.0$

- You have this:

$$
\times \not \subset 7
$$

- Execute this command:
- Step 1: Evaluate the expression 3.0 * $x+1.0$
- Step 2: Store its value in x

Execute the Statement: x = 3.0 * $x+1.0$

- You have this:

$$
x \not \subset 7
$$

- Execute this command:
- Step 1: Evaluate the expression 3.0 * $x+1.0$
- Step 2: Store its value in x
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Which One is Closest to Your Answer?

A:

$$
\text { x } \quad \mathbb{X} 22.0
$$

B:

$$
\begin{aligned}
& x \not \subset 7 \\
& x \not 22.0
\end{aligned}
$$

C:

$$
\begin{aligned}
& \text { x } X X \\
& \text { x } 22.0
\end{aligned}
$$

D:

Which One is Closest to Your Answer?

A:
B:

$$
\begin{aligned}
& x \not \subset 7 \\
& x \\
& \text { x }
\end{aligned}
$$

$$
x=3.0 * x+1.0
$$

Execute the Statement: x = 3.0 * $\mathrm{x}+1.0$

- You now have this:

```
x <又 }22.
```

- The command:
- Step 1: Evaluate the expression 3.0 * x + 1.0
- Step 2: Store its value in x
- This is how you execute an assignment statement
- Performing it is called executing the command
- Command requires both evaluate AND store to be correct
- Important mental model for understanding Python

Exercise: Understanding Assignment

- Add another variable, interestRate, to get this:

$$
\text { x } \mathbb{X} \mathbb{X} 22.0
$$ interestRate4

- Execute this assignment: interestRate $=x /$ interestRate
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Which One is Closest to Your Answer?

C:

$$
\begin{aligned}
& x \times 22.0 \\
& \text { interestRate } \times 5.5
\end{aligned}
$$

B:
x 2×22.0
interestRate χ
interestRate 5.5
D:
x 822.0
interestRate $\propto 5$

Which One is Closest to Your Answer?

Which One is Closest to Your Answer?

Exercise: Understanding Assignment

- You now have this:

$$
\text { x } \mathbb{X} 22.0 \text { interestRate } \nVdash 5.5
$$

- Execute this assignment:
intrestRate $=x+$ interestRate
- Check to see whether you did the same thing as your neighbor, discuss it if you did something different.

Which One is Closest to Your Answer?

A:

```
x 石又 }22.
```

interestRate $\times 5 \mathbf{5} \mathbf{5} .5$

B:
x 822.0
interestRate $\times 5.5$
intrestRate 27.5
D:
x 822.0
interestRate $\times 5 \times 5$
intrestRate 27.5

Which One is Closest to Your Answer?

Which One is Closest to Your Answer?

A:
x 8×22.0
interestRate $\times 5 \mathbf{5} \mathbf{5} .5$

B:
x 8 原 22.0
interestRate $\times 5.5$
intrestRate 27.5
intrestRate $=x+$ interestRate e

Spelling mistakes in Python are bad!!

Dynamic Typing

- Python is a dynamically typed language
- Variables can hold values of any type
- Variables can hold different types at different times
- Use type(x) to find out the type of the value in x
- The following is acceptable in Python:
$\gg x=1 \leqslant x$ contains an int value
>>> $x=x / 2.0 \longleftarrow x$ now contains a float value
- Alternative is a statically typed language (e.g. Java)
- Each variable restricted to values of just one type

More Detail: Testing Types

- Command: type(<value $>$)
- Can test a variable:
>>> $\mathrm{x}=5$
>>> type(x)
<type 'int‘>
- Can test a type with a Boolean expression:
>>> type(2) == int
True

