
Things to Do Before Next Class

Read Textbook

• Chapter 1 (browse)
• Chapter 2 (in detail)
• Chapter 3.1 – 3.4

Lab 1

• Go to your registered section
• Complete lab handout
• Have one week to complete
 Show to TA by end of lab, or:
 Show in consulting hours up

to the day before your lab, or:
 Show to TA within first 10

minutes of next week’s lab

Helping You Succeed in this Class

• Consultants. ACCEL Lab Green Room
 Daily office hours (see website) with consultants
 Very useful when working on assignments

• AEW Workshops. Additional discussion course
 Runs parallel to this class – completely optional
 See website; talk to advisors in Olin 167.

• Piazza. Online forum to ask and answer questions
• Office Hours. Talk to the professors!

Type: Set of values and the operations on them

• Type int:
 Values: integers
 Ops: +, –, *, /, %, **

• Type float:
 Values: real numbers
 Ops: +, –, *, /, **

• Type bool:
 Values: True and False
 Ops: not, and, or

• Type str:
 Values: string literals

• Double quotes: "abc"
• Single quotes: 'abc'

 Ops: + (concatenation)

Will see more types
in a few weeks

Operator Precedence

• What is the difference between the following?
 2*(1+3)
 2*1 + 3

• Operations are performed in a set order
 Parentheses make the order explicit
 What happens when there are no parentheses?

• Operator Precedence: The fixed order Python
processes operators in absence of parentheses

add, then multiply

multiply, then add

Precedence of Python Operators
• Exponentiation: **

• Unary operators: + –

• Binary arithmetic: * / %

• Binary arithmetic: + –

• Comparisons: < > <= >=

• Equality relations: == !=

• Logical not

• Logical and

• Logical or

• Precedence goes downwards
 Parentheses highest
 Logical ops lowest

• Same line = same precedence
 Read “ties” left to right
 Example: 1/2*3 is (1/2)*3

• Section 2.7 in your text

• See website for more info

• Was major portion of Lab 1

Expressions vs Statements

Expression

• Represents something
 Python evaluates it
 End result is a value

• Examples:
 2.3
 (3+5)/4

Statement

• Does something
 Python executes it
 Need not result in a value

• Examples:
 print “Hello”
 import sys

Will see later this is not a clear cut separation

Value

Complex Expression

Variables (Section 2.1)

• A variable
 is a named memory location (box)
 contains a value (in the box)
 can be used in expressions

• Examples:

5x Variable x, with value 5 (of type int)

20.1area Variable area, w/ value 20.1 (of type float)

Variable names
must start with a
letter (or _).

The type belongs
to the value, not
to the variable.

The value in the box is
then used in evaluating
the expression.

Variables and Assignment Statements

• Variables are created by assignment statements
 Create a new variable name and give it a value

x = 5

• This is a statement, not an expression
 Tells the computer to DO something (not give a value)
 Typing it into >>> gets no response (but it is working)

• Assignment statements can have expressions in them
 These expressions can even have variables in them

x = x + 2

x 5

Two steps to execute an assignment:
1. evaluate the expression on the right
2. store the result in the variable on the left

“gets”

8/27/15

the value

the variable

the expression

the variable

Execute the Statement: x = x + 2

• Draw variable x on piece of paper:

• Step 1: evaluate the expression x + 2
 For x, use the value in variable x
 Write the expression somewhere on your paper

• Step 2: Store the value of the expression in x
 Cross off the old value in the box
 Write the new value in the box for x

• Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.

5x

Execute the Statement: x = x + 2

• The variable x

• The command:
 Step 1: Evaluate the expression x + 2
 Step 2: Store its value in x

• This is how you execute an assignment statement
 Performing it is called executing the command
 Command requires both evaluate AND store to be correct
 Important mental model for understanding Python

5x

Dynamic Typing

• Python is a dynamically typed language
 Variables can hold values of any type
 Variables can hold different types at different times
 Use type(x) to find out the type of the value in x
 Use names of types for conversion, comparison

• The following is acceptable in Python:
>>> x = 1
>>> x = x / 2.0

• Alternative is a statically typed language (e.g. Java)
 Each variable restricted to values of just one type

 x contains an int value
 x now contains a float value

type(x) == int
x = float(x)
type(x) ==
float

Dynamic Typing

• Often want to track the type in a variable
 What is the result of evaluating x / y?
 Depends on whether x, y are int or float values

• Use expression type(<expression>) to get type
 type(2) evaluates to <type 'int'>
 type(x) evaluates to type of contents of x

• Can use in a boolean expression to test type
 type('abc') == str evaluates to True

	Things to Do Before Next Class
	Helping You Succeed in this Class
	Type: Set of values and the operations on them
	Operator Precedence
	Precedence of Python Operators
	Expressions vs Statements
	Variables (Section 2.1)
	Variables and Assignment Statements
	Execute the Statement: x = x + 2
	Execute the Statement: x = x + 2
	Dynamic Typing
	Dynamic Typing

