
CS 1110, LAB 12: LOOPS AND LOOP INVARIANTS

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs/lab13.pdf

First Name: Last Name: NetID:

Getting Credit: Deadline: in the first 10 minutes of (your) lab next week (Tues May
9/Wed May 10). The checking-off procedure is the same as before.1

Exercise 1: Warm-Up Exercises

Completing Assertions; practice with integer-range notation. Each row below contains an
assertion P and an assertion R that we would like to be true. In the right-hand column, write
an assignment statement for variable n that allows us to conclude that R is true if P was true
beforehand. We have filled in the first one for you.

Know P Want R Assignment to n

that makes R true

x is the sum of 1..n x is the sum of 1..100 n = 100

x is the sum of 1..(n−1) x is the sum of 1..100

x is the product of n..k x is the product of 1..k

x is smallest element of the
segment s[0..n−1]

x is smallest element of the
segment s[0..len(s)−1]

x is no. of blanks in s[0..n-1] x is no. of blanks in s[0..]

x is the smallest element of the
segment s[n..]

x is the smallest element of the
segment s[0..]

b is True if nothing in h..k

divides x; False otherwise
b is True if nothing in n..k

divides x; False otherwise

Preserving Invariants. In each of (a)-(d) below, you are given an assertion labeled P and an
assignment statement. Where indicated, write code so that if the assertion P is true initially, it is
also true after your code and the assignment statement. We have done the first one for you.

In all of these exercises, v is a list of ints.

Course authors: E. Andersen, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White
1 In case you’ve forgotten, here’s a reminder: Show this handout and/or your code to a staff member either (a)

during your lab 13 session, (b) in non-professorial consulting hours listed at http://www.cs.cornell.edu/courses/

cs1110/2017sp/about/staff.php up to the day before your next scheduled lab section, or (c) in the first 10 minutes
of (your) next scheduled lab (Tues May 9/Wed May 10). Beyond that time, the staff have been instructed not to
give you credit.
Labs are graded on effort, not correctness. We just want to see that you tried all the exercises, and to clarify any
misunderstandings or questions you have.

1

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs/lab13.pdf
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/staff.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/staff.php

(a) # P: x is the sum of 1..n

STUDENTS: Put 1-3 lines here:

x = x + (n+1)

n = n + 1

x is (once again) the sum of 1..n

(c) # P: x is the minimum of v[0..k-1]

STUDENTS: Put 1-3 lines here:

k = k + 1

x is (again) the min of v[0..k-1]

(b) # P: x is the sum of h..100

STUDENTS: Put 1-3 lines here:

h = h - 1

x is (once again) the sum of h..100

(d) # P: x is the minimum of v[h..100]

STUDENTS: Put 1-3 lines here:

h = h - 1

x is (again) the min of v[h..100]

Exercise 2: Functions With Loop Invariants

The following pages provides “stub” (skeletons) for several functions, all of which have the same
specification, but are to be implemented based on different invariants. Complete two of the three
skeletons with while-loops that constitute effective use of the given invariants.

If you want to code up and test your solutions, or see test cases for the function to be implemented,
get the Lab 13 files packaged in a single zip file from the Labs section of the course web page,
http://www.cs.cornell.edu/courses/cs1110/2017sp/labs .

2

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs

def num_space_runs1(s):

"""Returns: The number of runs of spaces in the string s.

A run is a collection of adjacent spaces. We need a non-space character

in between to break up runs.

Example: num_space_runs(' a f g ') returns 4

num_space_runs('a f g') returns 2

num_space_runs(' a bc d') returns 3

Parameter s: The string to parse

Precondition: s is a nonempty string with letters and spaces"""

STUDENTS: The invariant for you to work with is:

s[0..i-1] has n runs of spaces, AND:

in_a_run is a boolean:

True if i-1 is a valid index and s[i-1] is a space

False otherwise

#

In other words, s[i..len(s)-1] still needs to be checked;

and in_a_run tells us whether a new space would be part of an old run.

REPLACE THE FOLLOWING WITH CORRECT INITIALIZATION CODE:

i = None

n = None

in_a_run = None

PUT YOUR WHILE LOOP HERE

Hint1: you only need to increment n when you find a space and you are

not currently in a run.

Hint2: you need to change in_a_run when:

(a) you have found a space and you are not currently in a run, or

(b) you found a non-space and you currently in a run

Hint3: don't forget to increment your loop variable, if you have one!

post: s[0..len(s)-1] contains n runs of spaces

PUT THE RETURN STATEMENT HERE

3

def num_space_runs2(s):

"""Same spec as above"""

invariant: s[0..i] contains n runs of spaces. So if i+1 is a legal index,

s[i+1] is the next thing to check, or the unknowns are s[i+1..len(s)-1].

WE ARE GIVING YOU THE FOLLOWING INITIALIZATION. DON'T CHANGE IT.

i = 0

if s[0] == ' ': # this initialization "peeks" at the data to see

whether s[0] starts a run or not.

n = 1

else:

n = 0

PUT YOUR WHILE LOOP HERE.

Hint: you only need to increment n when you have a space following a

non-space.

post: s[0..len(s)-1] contains n runs of spaces

PUT THE RETURN STATEMENT HERE

4

def num_space_runs3(s):

"""Same spec as above"""

The invariant for you to work with is:

s[0..i] has n runs of spaces

#

In other words, s[i+1..len(s)-1] still needs to be checked.

WE ARE GIVING YOU THE FOLLOWING INITIALIZATION. DON'T CHANGE IT.

i = -1

n = 0

PUT YOUR WHILE LOOP HERE

Hint: you only need to increment n when i is a valid index and s[i] is

not a space but s[i+1] is a space,

OR when i is -1 and the very first character in s is a space

post: s[0..len(s)-1] contains n runs of spaces

PUT THE RETURN STATEMENT HERE

5

	Exercise 1: Warm-Up Exercises
	Completing Assertions; practice with integer-range notation
	Preserving Invariants

	Exercise 2: Functions With Loop Invariants

