CS 1110, LAB 6: LISTS: CARDS AND POKER HANDS
http://www.cs.cornell.edu/courses/cs1110/2017sp/labs/1ab06.pdf

First Name: Last Name: NetID:

Getting Credit: Deadline: the first 10 minutes of (your) lab two weeks from now (Tue Mar
21 or Wed 22), due to the prelim. But since this lab covers material that will be on the prelim,
don’t wait until after the prelim to start it!

The checking-off procedure is the same as before.!

1. LisT OPERATIONS

Complete the following tables as usual. Box-and-folder diagrams can help. Remember that list
slicing produces a new list.

Commands Expected Output

Correct?

lablist=['Cats', 'rule','!','?','1'] | (n/a)

(n/a)

lablist.remove('!"')
print lablist

lablist.remove('C')

print lablist.insert(2, '!')

print lablist

print lablist.index('!')

copyl = lablist
copy2 = lablistl[:]
lablist[0] = 'Dogs'
print copyl

print copy2

copy2.append(' As do bats.')
print copy2

print len(copy2)

Course authors: E. Andersen, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White

L'In case you’ve forgotten, here’s a reminder: Show this handout and/or your code to a staff member either (a)
during your lab 06 session, (b) in consulting hours listed at http://www.cs.cornell.edu/courses/cs1110/2017sp/
about/staff.php up to the day before your next scheduled lab section, or (c) in the first 10 minutes of (your) next
scheduled lab (Tue Mar 21 or Wed 22). Beyond that time, the staff have been instructed not to give you credit.
Labs are graded on effort, not correctness. We just want to see that you tried all the exercises, and to clarify any
misunderstandings or questions you have.

1

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs/lab06.pdf
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/staff.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/staff.php

2. THE MODULE CARDSTUFF, AND SOME COMMON ERROR MESSAGES

Create a new directory on your hard drive for this lab’s files. Then, download into that new
directory the files you need for lab 06; get them packaged in a single zip file from the Labs section
of the course web page, http://www.cs.cornell.edu/courses/cs1110/2017sp/labs

You’ll be working with the Card type. The definition and details are given in cardstuff.py, but
here’s all you need to know:

e Cards have two attributes, a suit and a rank, both ints. Using ints makes it easy to
compare card values; for instance, # K may be “worth” more than 2.

e To translate our ints into human-readable card names, we have two lists, defined in module
cardstuff named SUIT_NAMES and RANK_NAMES; these lists serve as “translation tables”.

To see how this works, go to the directory you downloaded the lab files into, and begin a Python
interactive session. Then, for each line below that isn’t a comment, enter it.

import cardstuff

print cardstuff.SUIT_NAMES

the next commands look at element O and 1 of the list cardstuff.SUIT_NAMES
print cardstuff.SUIT_NAMES[0]

print cardstuff.SUIT_NAMES[1]

So, 0 represents Clubs, 1 represents Diamonds, and in general, int s represents the suit given by
cardstuff.SUIT_NAMES[s] when s is one of 0, 1, 2, 3.

Similarly, try these:

print cardstuff.RANK_NAMES

the next commands look at some elements of the list cardstuff.RANK_NAMES
print cardstuff.RANK_NAMES[1]

print cardstuff.RANK_NAMES[2]

print cardstuff.RANK_NAMES[11]

Thus, 11 represents a Jack, 2 represents a 2, 1 represents an Ace, and in general, int r represents
the rank given by cardstuff.RANK_NAMES [r].?

What error message do you get if you enter print cardstuff.RANK_NAMES[14] in Python in-
teractive mode, and why? Write your answer below.

Now, practice creating and printing some cards. Our initializer for Cards has two® parameters,
s and r, the ints for the suit and rank of the new card, respectively.

Try the following;:

2Small detail that you can skip if you don’t care: The value None in element 0 of cardstuff.RANK_NAMES is an
encoding trick that lets us talk about ranks 1 through 13, not 0 through 12. Wouldn’t it have been weird if we had
said that a 1 represents a 27
Swe'll explain later in the course why, if you look at the actual class definition in the code, the definition for the
initializer method actually has three parameters. For now, don’t worry about it.
2

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs

cl = cardstuff.Card(0,13)
print cl.rank, cl.suit
print cardstuff.RANK_NAMES[cl.rank] + ' of ' + cardstuff.SUIT_NAMES[cl.suit]

The last line you entered above is what is used, employing a little Python “method”-ology you
haven’t learned yet, inside our definition of the Card class to cause the print function to give nice
output for cards. To see this, try the following:

print ci
You should see the exact same output.

What error message do you get if you enter print cardstuff.RANK_NAMES [rank] (that is, don’t
have the c1 in the square brackets), and why?

Finally, let’s practice creating a new list of two new cards. Here’s one way to do it: try the
following:

cardlist = [cardstuff.Card(1,4), cardstuff.Card(2,11)]
#check that there are exactly two cards

len(cardlist)

print cardlist[0]

print cardlist[1]

3. WRITING FUNCTIONS FOR CARD DECKS AND HANDS
3.1. print_cards. We’re going to be using lists of Cards to represent card decks and card hands.
In doing so, we’d like to be able to look at the contents of a list of cards. Try this:
print cardlist
Not too informative (to humans), right?
So, instead, we’ve almost completed for you a function print_cards, which looks like this:

def print_cards(clist):

"""Print cards in list clist, which is a (possibly empty) list of Cards."""
for ¢ in clist:

print c

The line for ¢ in clist: is the beginning of a for-loop, a construct we briefly mention in lecture
11. What it means is that the variable ¢ takes on each value in clist in turn; for each such value,
the body of code indented below the line is executed. So, try it out (still in Python Interactive
Mode) to see what it does:

cardstuff.print_cards(cardlist) # prettier than before!
3

What would happen if instead of print c, the line in the for-loop said read print "card", and
why?

3.2. draw_poker_hand. OK, now for the exciting (7) part: you can try your hand (ha) at drawing
poker hands from decks, by implementing cardstuff.draw_poker_hand. Take a look at its specifi-
cation. There are going to be several steps involved, which we're going to break up into helper
functions.

You’ll want to make use of standard list operations to implement your helper func-
tions. Look at section 5.1 here: http://docs.python.org/2/tutorial/datastructures.html
or the relevant lecture handouts.

3.2.1. draw. First, we’ll want to be able to randomly draw a single card from a given deck supplied
as an argument, and return that card, removing it from the deck.

Look at the code skeleton and comments for draw that we’ve provided you. We’ve already
written a line that choses a random index i for the card list given as argument. So all you have
to do is add a line or two that (a) removes the element of the argument list at index i, and (b)
returns that element. Use the list method pop, documented at the webpage mentioned above.

Test your code in the command shell:

(1) Exit python, to bring you to the command shell.
(2) Enter python cardstufftest.py

. and debug as appropriate until your code passes the test of cardstufftest.test_draw.

3.2.2. poker_compare. Now let’s deal with the fact that cardstuff.draw_poker_hand wants an order-
ing on the list it returns. This ordering will be determined by the function poker_compare.

Using if-statements and the like, implement cardstuff.poker_compare according to its specifi-
cation, which explains what you must do. You’ll probably need to write some non-trivial boolean
expressions inside your if statements.

Run the unit test cardstufftest.py to get a quick diagnostic on whether your implementation is
correct, by seeing if you get past cardstufftest.test_compare().

3.2.3. finish draw_poker_hand using your helper functions. OK, now for the piece de résistance:
complete function cardstuff.draw_poker_hand. Your code should include five calls to draw_card
(unless you feel like figuring out that business about for-loops) — each time appending the item
returned by draw to the temporary list output. You’ll also want to sort the output list, and to use
some list method to reverse the sort you used. There’s a hint or two regarding syntax given in the
comments in the body of the code.

You can test by running cardstufftest.py repeatedly: you should see a random poker hand, appro-
priately sorted, printed out near the end each time, plus a small amount of diagnostic information.

4

http://docs.python.org/2/tutorial/datastructures.html

	1. List Operations
	2. The Module cardstuff, and Some Common Error Messages
	3. Writing Functions for Card Decks and Hands
	3.1. print_cards
	3.2. draw_poker_hand

