
CS 1110, LAB 02: FUNCTIONS AND (IN) MODULES — SOME “HI”-LIGHTS

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs/lab02.pdf

First Name: Last Name: NetID:

Lab updated from the printed version on Feb 6 4:38pm: on pg 7, see change in orange.

Learning goals: Practice with: (1) the Command Shell; (2) using and editing functions defined in
an external file; (3) Komodo Edit; (4) running Python scripts on the command line; (5) using one
function as a helper for another.

Getting Credit: Deadline: in the first 10 minutes of (your) lab next week (Tu Feb 14 or
Wed Feb 15). The checking-off procedure is the same as before.1

1. Built-ins We’ll Use In This Lab

1.1. Repeated string concatenation. You know that * is the multiplication operator for ints
and floats. It turns out that * can also be used to “repeat” a string: If s is a string and n is a
positive int, then the expression s*n yields a string that is n copies of s concatenated together.

Some examples should make this clear. Open a command shell and start up Python interactive
mode.2 Type in the following expressions in order and write down the evaluation results.

Expression Evaluation Result

'abc'*2

'abc.'*4

s = 'a b c. '

s*2

n = 3

s*n

Course authors: E. Andersen, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White
1 In case you’ve forgotten, here’s a reminder: Show this handout and/or your code to a staff member either (a)

during your lab 02 session, (b) in consulting hours listed at http://www.cs.cornell.edu/courses/cs1110/2017sp/

about/staff.php up to the day before your next scheduled lab section, or (c) in the first 10 minutes of (your) next
scheduled lab (Tu Feb 14 or Wed Feb 15). Beyond that time, the staff have been instructed not to give you credit.
Labs are graded on effort, not correctness. We just want to see that you tried all the exercises, and to clarify any
misunderstandings or questions you have.

2Remember, you do this by typing python at the command shell prompt. You’ll then see the Python interactive
prompt, >>>.

1

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs/lab02.pdf
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/staff.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/staff.php

1.2. Random number generation. As mentioned in lecture, the Python built-in module
random contains functions for generating random numbers. One such function is randint(a,b),
which, if a and b are ints with b ≥ a, returns a random integer drawn from between a and b

inclusive.

Let’s try it out. First, in Python, make the name of the random module accessible to Python by
entering import random at the interactive prompt.

Next, here are two ways you might now try to generate a random int between 1 and 3 inclusive.
Circle the one that is correct.

random.randint(1,3) randint(1,3)

Why would the other option would give you an error?

Check your answer by entering it four separate times in Python. (Hint: save time and typing by
using the up-arrow key to bring up the previous line you entered.) Write down the four numbers
you get here:

2. Navigating Folder (Directory) Structure In A Command Shell

2.1. Setting up. Create a new directory called lab02 on your Desktop.3

Download the files you need for lab 02 from the Labs section of the course web page,
http://www.cs.cornell.edu/courses/cs1110/2017sp/labs and put them all in the new
lab02 folder you just created.

2.2. Getting to the right directory (folder) in the command shell. Start the command
shell for your computer:

• On Windows, this is called the Command Prompt. It is found in Accessories in the
Start Menu on Windows 7, or Apps Windows System on Windows 10.

• On Mac OS X, this is called the Terminal. It is found in Applications Utilities,
or type + Space to call up Spotlight Search, and then type Terminal in the
Spotlight Search window to find it.

You will type commands into this command shell, not in the Python interactive shell! Make sure
you do not see the “>>>” prompt!4

3In future labs, you can put directories wherever you want, but this lab assumes you put lab02 in your Desktop
folder.

4If you do, enter exit() or hit ctrl + D to exit Python interactive mode.

2

http://www.cs.cornell.edu/courses/cs1110/2017sp/labs

The command shell “looks into” a specific folder. We call this folder the active or working
directory. When the command shell starts, the active directory is your home directory. If you are
using your own computer, in both Windows and OS X, this is the folder with your name on it.

Next, open up a window for your home directory, and put it next to the command shell. Go
back to the command shell. If you are using Windows, type

dir

and hit Return ; if you are using OS X, type

ls -l

(that is a “ell ess space hyphen ell”, not a “one ess space hyphen one” — the name comes from the
word list, and the -l means use the option that generates long output format) and hit Return . In
a few words, describe what you see and how this correlates to what you see in the window next to
the command shell.

Now let us move the view of the command shell to the Desktop. This is actually a folder stored
inside your home directory. To get there from the home directory, enter (on either OS)

cd Desktop

into the command shell. (“cd” stands for change directory.)

Once again enter either dir or ls -l (depending on your operating system) into the command
shell. Is the command shell still listing the files that are in your home directory, or is it now
displaying the files that are on your Desktop, or something else?

We want you to change the active directory to the folder lab02. If you followed the instructions
above, this folder should be in your Desktop folder. So, enter

cd lab02

3

If all the above instructions have been executed correctly, then you should now be able to run a
verification python script we’ve written for you; so, enter

python verify_shell_location.py

(To get the two underscore characters “ ” in the name verify shell location.py, on most key-
boards, do shift + - , where the latter is the key you hit to get a minus-sign.)

What output do you get? If you get anything that doesn’t contain “Hurrah!”, ask for
help immediately.

IF YOU GOT ANY ERROR MESSAGES OR DIDN’T UNDERSTAND SOME-
THING ON PAGE 3 OR THIS PART OF PAGE 4, ASK FOR HELP BEFORE
PROCEEDING!

Later, you can also refer to our webpage for more on working with the command shell here:
http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/command.php

3. Using Functions From A Module In Interactive Mode

The previous section set up the command shell so that its working directory contains the lab
files. Let’s now experiment with using the functions stored in the file greetings.py, at first in
Python interactive mode.

Start up Python in the command shell.5

Make the name of the module greetings accessible to Python by entering import greetings.

See human-readable documentation of what is in greetings by entering help(greetings), and
pay special attention to the description for multi hi. When you’re done, hit Q to quit seeing the
documentation.

Do you still remember the multi hi description? Probably not. So instead, since you’re starting
to become a programmer:

(1) Start up Komodo Edit.

(2) In Komodo Edit, open6 file Desktop lab02 greetings.py, where the symbol
stands for your home directory.

(3) In greetings.py, look for the line “def multi hi(name, num):” (line 9). Underneath it
is the docstring, enclosed in triple double-quotes, that explains what the function multi hi

does; when you were in Python interactive mode, when you typed “help(greetings)”,
Python extracted that docstring and displayed it to you.7

5Reminder: enter python at the command shell prompt; you should then get the “>>>” Python prompt.
6See the course webpage labeled “Python/Komodo” for instructions on how to open files: http://www.cs.

cornell.edu/courses/cs1110/2017sp/materials/python.php .
7Which is kind of cool, but you might not appreciate that until later. It’s OK if you don’t find that particularly

interesting now.

4

http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/command.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/python.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/python.php

(4) Also, below the docstring for multi hi is the actual code body for the function. Notice
that it uses the string repetition * we learned about in Section 1.1.

The docstring and code itself should give you enough information to guess what each expression
below evaluates to. So, fill in your guesses below.8 Then verify if Python agrees with you!

Expression Expected Value If Python dis-
agrees, why?

greetings.multi hi("Wei", 2)

greetings.multi hi("Jinx", 3)

greetings.multi hi("Potenuse", 1)

greetings.multi hi(Wei, 4)

4. Using Functions From A Module In A Script

Now, let’s see how function multi hi can be used in a Python script that is run by the command
shell.

First, exit Python9.

You’ll be running the Python script run multi hi.py, so open it up in Komodo Edit to see what
it’s supposed to do.

Hey, look, except for using “print” to display the result of evaluating expressions, this script
does just what you just did in Section 3. Prove it to yourself as follows: at your command-shell
prompt10, enter python run multi hi.py in order to have Python run the script.

Notice that you get an error message stating that there’s a problem with a particular line. Read
the error message to answer the following questions: Which file has the problem? Which line
number has the problem? And what does that line say? Is it similar to what you saw in Python
interactive mode?

5. Writing Your Own Functions

5.1. Complete function rand hi(). Let’s now make rand hi() in greetings.py do something
interesting: generate a random number of “hi”s, using the function randint from Section 1.2.

8You’ll probably find using the up-arrow key useful here, again.
9Enter exit() or hit ctrl + D .
10Which should not be “>>>”.

5

A skeleton of the new function rand hi is in greetings.py. Additionally, we’ve written a test
script named test rand hi.py that will help you check your function as you go. It’s useful to
be able to see both files in Komodo Edit at the same time, so here’s how you can do it. Go
to (or re-open) greetings.py in Komodo Edit; then activate “Split View”: in the Komodo Edit
menu, View Split View . You’ll get two file-viewing panes. Click on the pane you want to view
test rand hi.py in, and then open test rand hi.py.11

You can see that test rand hi.py just prints the result of evaluating the function rand hi

several times. Now, scroll down in greetings.py so you can see the current definition of rand hi,
which starts at line 19. Right now, the function just sets variable reps to 0, and doesn’t have
a return statement. This means that it implicitly returns the special value None. What do you
therefore think will happen if you run Python on test rand hi.py?

Test it out (enter python test rand hi.py in the command shell). What do you get, and why?

Let’s get to work on rand hi!

The first step is to take responsibility for the changes you’ll be making12, as follows: go back to
greetings.py, and in line 2, replace the text “PUT YOUR NAME AND NETID HERE” with,
well, your name and net ID. Make sure you leave the comment character ’#’ at the beginning of
the line.

Now, save and test and ask: save13 the file (This is important! Forgetting to save leads to confu-
sion!) and check that you didn’t insert any syntax errors by running Python on test rand hi.py

again; you should get the same boring result you got before, but no errors. If you do get an error
or get different output than before, ask for help.

Since randint() is in module random, make that module’s name available in greetings,py by
inserting the line

import random

underneath the module docstring, i.e., around line 7 or 8. Make sure that you did not indent
your new line. Insert blank lines so that the import statement is visually separated from both the
module docstring above it and the beginning of the function definitions below it.14

Save-and-test-and-ask again; you should get the same output as before.

11We think you’ll probably agree that Split View is cool. If you’d like the two files to be side-by-side instead
of one-above-the-other, use the Komodo Edit menu option View Rotate Split View . You can toggle back and forth
between horizontal and vertical layout by repeated application of View Rotate Split View .

12You will need to do this for every assignment, so you might as well get into the habit now.
13See the course webpage labeled “Python/Komodo” for instructions on how to save files and check whether files

have been saved in Komodo Edit: http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/python.php .
14You can look at line 7 of file run multi hi.py to see an example of an import statement in a Python file.

6

http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/python.php

Now, we want reps to store a random number, not just be 0 all the time. So, replace the
placeholder line that starts with reps = 0 with the following: (next line updated, Feb 6 4:38pm)
reps = random.randint(1,6)

Make sure that your new line is still indented the way the previous version was.

Save-and-test-and-ask again; you should still get the same output as before, but we need to make
sure there aren’t any syntax errors introduced.

Finally, add the line return multi hi(name,reps), indented the same amount as your reps =

... line.

Save-and-test-and-ask: now what output do you get?

Why do you have to say return multi hi(name,reps), and not return greetings.multi hi(name,reps)?

5.2. Use rand hi() as a helper for natural hi().

The greetings produced by test rand hi.py are informal, but rather impersonal. Function
natural hi, later in file greetings.py is meant to be an improvement.

Scroll down in greetings.py so you can see the code for natural hi. Right now, it just uses a
Python built-in called raw input to ask the user a question, and then stores the user’s answer in
variable input name.

Let’s have natural hi() feed the value in input name as an input into rand hi(), and use the
value that the latter returns as a result as its own output. To do this, add the following line,
indented exactly as the line input name = raw input ... is:

return rand_hi(input_name)

To see whether you have natural hi() implemented correctly, save the file first! and then in
the command shell, run Python on finally.py. If you get some personalized output plus an
encouraging statement, write them here; otherwise, ask for help.

Indicate all the changes you made to greetings.py on the copy of the code given on
the last page of this handout so that you can show the lab staff what you did and they can
check off your work.
We hope you got a “natural high” from completing this lab!!

7

6. Indicate Changes You Made to greetings.py here

1 # greetings.py

2 # PUT YOUR NAME AND NETID HERE

3 # Feb, 2017

4 # Skeleton by Profs Erik Andersen and Lillian Lee

5

6 """Library of functions producing greetings"""

7

8

9 def multi_hi(name,num):

10 """Returns a string of the form: "hi " repeated <num> times, followed by

11 <name>, followed by "!".

12 Preconditions (i.e., assumptions this function makes about its input):

13 name is a string

14 num is a positive int

15 """

16 return "hi "*num + name + "!"

17

18

19 def rand_hi(name):

20 """SEE LAB HANDOUT.

21 Precondition: name is a string"""

22 reps = 0 # ***placeholder: replace as instructed***

23

24

25

26 def natural_hi():

27 """SEE LAB HANDOUT"""

28 input_name = raw_input('Please enter your name: ')

29

8

	1. Built-ins We'll Use In This Lab
	1.1. Repeated string concatenation
	1.2. Random number generation

	2. Navigating Folder (Directory) Structure In A Command Shell
	2.1. Setting up
	2.2. Getting to the right directory (folder) in the command shell

	3. Using Functions From A Module In Interactive Mode
	4. Using Functions From A Module In A Script
	5. Writing Your Own Functions
	5.1. Complete function rand_hi()
	5.2. Use rand_hi() as a helper for natural_hi()

	6. Indicate Changes You Made to greetings.py here

