
Prelim 2 Review
Spring 2017

CS 1110

Exam Info

• Prelim 2: 7:30–9:00PM, Tuesday, April 25th
§ aa200 – jjm200 Baker Laboratory 200
§ jjm201 – sge200 Rockefeller 201
§ sge201 – zz200 Rockefeller 203

• Baker Lab 200, Rockefeller Hall 201, 203
• No Electronics, No Notes, Closed book.
• Bring your Cornell ID
• Put your Name & NetId on Each Page!!!
04/23/17 Prelim 2 Review 2

What is on the Exam?

• The big topics:
§ Nested Lists & Dictionaries (A3, Lab 8)
§ Recursion (A4, Lab 9)
§ Defining classes (Lab 10, Lab 11, A4)
§ Inheritance and subclasses (Lab 11)
§ Name Resolution
§ While Loops & Invariants

Prelim 2 Review 304/23/17

What is on the Exam?

• The big topics:
§ Nested Lists & Dictionaries (A3, Lab 8)
§ Recursion (A4, Lab 9)
§ Defining classes (Lab 10, Lab 11, A4)
§ Inheritance and subclasses (Lab 11)
§ Name Resolution
§ While Loops & Invariants

Prelim 2 Review 404/23/17

Nested Lists

Prelim 2 Review 504/23/17

Diagram the objects created during the following code:
>>> nlst = [[1, 2], [3, 4, 5], [6, 7]]
>>> slice = nlst[1:]
>>> slice[1].append(0)

Nested Lists

Prelim 2 Review 604/23/17

Diagram the objects created during the following code:
>>> nlst = [[1, 2], [3, 4, 5], [6, 7]]
>>> slice = nlst[1:]
>>> slice[1].append(0)

id4
list

0 6

1 7

id2
list

0 1

1 2

id3
list

0 3

1 4

2 5

id1nlst
id1

list

0 id2

1 id3

2 id4

Nested Lists

Prelim 2 Review 704/23/17

Diagram the objects created during the following code:
>>> nlst = [[1, 2], [3, 4, 5], [6, 7]]
>>> slice = nlst[1:]
>>> slice[1].append(0)

id4
list

0 6

1 7

id2
list

0 1

1 2

id3
list

0 3

1 4

2 5

id1nlst
id1

list

0 id2

1 id3

2 id4

id5slice

id5
list

0 id3

1 id4

Nested Lists

Prelim 2 Review 804/23/17

Diagram the objects created during the following code:
>>> nlst = [[1, 2], [3, 4, 5], [6, 7]]
>>> slice = nlst[1:]
>>> slice[1].append(0)

id4
list

0 6

1 7

id2
list

0 1

1 2

id3
list

0 3

1 4

2 5

id1nlst
id1

list

0 id2

1 id3

2 id4

id5slice

id5
list

0 id3

1 id4

2 0

Function with 2D Lists

def max_cols(table):
"""Returns: Row with max value of each column
We assume that table is a 2D list of floats (so it is a list of rows and
each row has the same number of columns. This function returns
a new list that stores the maximum value of each column.
Examples:

max_cols([[1,2,3], [2,0,4], [0,5,2]]) is [2,5,4]
max_cols([[1,2,3]]) is [1,2,3]

Precondition: table is a NONEMPTY 2D list of floats"""

Prelim 2 Review 904/23/17

Function with 2D Lists

def max_cols(table):
"""Returns: Row with max value of each column
Precondition: table is a NONEMPTY 2D list of floats"""
Use the fact that table is not empty
result = table[0][:] # Make a copy, do not modify table.
Loop through rows, then loop through columns
for row in table:

for k in range(len(row))
if row[k] > result[k]

result[k] = row[k]
return result

Prelim 2 Review 1004/23/17

Dictionaries

• Key-value pairs, unique keys
• Creation: dic = {'a': 1, 'b': 2, 'c': 3}
• Access: dic['a']
• Modification: dic['a'] = 5
• Add new key: dic['d'] = 7
• Delete key: del dic['c']
• Does not have a specific order! Not indexable

Prelim 2 Review 1104/23/17

What is on the Exam?

• The big topics:
§ Nested Lists & Dictionaries (A3, Lab 8)
§ Recursion (A4, Lab 9)
§ Defining classes (Lab 10, Lab 11, A4)
§ Inheritance and subclasses (Lab 11)
§ Name Resolution
§ While Loops & Invariants

Prelim 2 Review 1204/23/17

Recursion

• What kind of questions might be asked?
§ Will be given a function specification
§ Implement it using recursion
§ May have an associated call stack question

• Divide and Conquer
§ Base case

• Decide what to do on “small” data
§ Recursive case

• Decide how to break up your data into smaller pieces
§ Decide how to combine your answers

Prelim 2 Review 1304/23/17

Recursion with nested lists

Prelim 2 Review 1404/23/17

def flatten(lst):
"""Return: a COPY of the flattened version of the list lst.

lst is a potentially nested list. A flattened version of lst means to take the nested
list and turn it into a one-dimentional list.

Example: flatten([]) returns [],
flatten([[1], 2, 3]) returns [1, 2, 3]
flatten([1, [2, 3], [[4], [[]], 5, [6, 7, 8]], 9]) returns [1, 2, 3, 4, 5, 6, 7, 8, 9]

Precondition: lst is a list or an int"""

Recursion with nested lists

Prelim 2 Review 1504/23/17

def flatten(lst):
"""Return: a COPY of the flattened version of the list lst
Precondition: lst is a list or an int"""

if type(lst) == int:
return [lst]

if lst == []:
return []

left = flatten(lst[0])
right = flatten(lst[1:])

return left + right

Recursion with objects (Modified FA16)

Prelim 2 Review 1604/23/17

class Person(object):
"""Instance is a person/family tree
INSTANCE ATTRIBUTES:

name: First name [nonempty str]
mom: Mom’s side [Person or None]
dad: Dad’s side [Person or None]

"""
…

To make person s in the right picture, you do s = Person(‘Jane’, None, None)
To make person q, you use the assignment q = Person(‘Robin’, s, None)
A geneaology list is defined recursively as follows:

• It is a nonempty list with exactly three elements.
• The first element is a nonempty string, respresenting the person’s name.
• The last two elements are either None or genealogy lists.

For example, the geneaology list of s is [‘Jane’, None, None]
The geneaology list of q is [‘Robin’, [‘Jane’, None, None], None]

Recursion with objects

Prelim 2 Review 1704/23/17

def geneology_list(person):
""”Return: A geneology list of the Person object, person.

For example, using the objects on the previous slide,
geneology_list(s) returns [‘Jane’, None, None]
geneology_list(q) returns [‘Robin’, [‘Jane’, None, None], None]

Precondition: person is a Person object
""”

Recursion with objects

Prelim 2 Review 1804/23/17

def geneology_list(person):
""”Return: A geneology list of the Person object, person.
Precondition: person is a Person object ""”
if person.mom is None:

mom = None
else:

mom = geneology_list(person.mom)

if person.dad is None:
dad = None

else:
dad = geneology_list(person.dad)

return [person.name, mom, dad]

Recursion with Dictionaries (Fall 2014)

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If
the letter is not in s, then there is NO KEY for it in the histogram.

Example: histogram(“”) returns {},
histogram('abracadabra') returns {'a':5,'b':2,'c':1,'d':1,'r':2}

Precondition: s is a string (possibly empty) of just letters."""

Prelim 2 Review 1904/23/17

Recursion with Dictionaries (Fall 2014)

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If
the letter is not in s, then there is NO KEY for it in the histogram.

Precondition: s is a string (possibly empty) of just letters."""

Prelim 2 Review 20

• Use divide-and-conquer to break up the string
• Get two dictionaries back when you do
• Pick one and insert the results of the other

Hint:

04/23/17

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s."""
if s == '': # Small data

return {}

We know left is { s[0]: 1 }. No need to compute
right = histogram(s[1:])

if s[0] in right: # Combine the answer
right[s[0]] = right[s[0]]+1

else:
right[s[0]] = 1

return right
Prelim 2 Review 2104/23/17

Recursion with Dictionaries (Fall 2014)

Recursion and the call stack

def skip(s):
"""Returns: copy of s
Odd (from end) skipped"""

1 result = ''
2 if (len(s) % 2 = 1):
3 result = skip(s[1:])
4 elif len(s) > 0:
5 result = s[0]+skip(s[1:])
6 return result

• Call: skip('abc')
• Recursive call results

in four frames (why?)
§ Consider when 4th

frame completes line 6
§ Draw the entire call

stack at that time
• Do not draw more

than four frames!

Prelim 2 Review 2204/23/17

Call Stack Question

def skip(s):
"""Returns: copy of s
Odd (from end) skipped"""

1 result = ''
2 if (len(s) % 2 = 1):
3 result = skip(s[1:])
4 elif len(s) > 0:
5 result = s[0]+skip(s[1:])
6 return result

• Call: skip('abc')

23

skip
s 'abc'

skip
s 'bc'

skip
s 'c'

skip
s ''

RETURN ''
Prelim 2 Review

result ''

result ''

result ''

result ''
04/23/17

1, 2, 4, 5

1, 2, 3

1, 2, 3

1, 2, 4, 6

Call Stack Question

def skip(s):
"""Returns: copy of s
Odd (from end) skipped"""

1 result = ''
2 if (len(s) % 2 = 1):
3 result = skip(s[1:])
4 elif len(s) > 0:
5 result = s[0]+skip(s[1:])
6 return result

• Call: skip('abc')

24

skip 3
s 'abc'

skip 5
s 'bc'

skip 3
s 'c'

skip
s ''

RETURN ''
Prelim 2 Review

result ''

result ''

result ''

result ''

s = 'abc'
s = 'c'

s = 'bc'

s = ''

04/23/17

skip
s 'abc'

skip
s 'bc'

skip
s 'c'

skip
s ''

RETURN ''

result ''

result ''

result ''

result ''

1, 2, 4, 6

1, 2, 4, 5

Done
Line 6

1, 2, 3

1, 2, 3

Good Luck!

Prelim 2 Review 2504/23/17

