
Prelim 2 Review Part 1

Spring 2017

CS 1110

Exam Info

• Prelim 2: 7:30–9:00PM, Tuesday, April 25th

 aa200-jjm200 Baker Laboratory 200

 jjm201 – sge200 Rockefeller 201

 sge201 – zz200 Rockefeller 203

• No Electronics, Calculators, Notes, or Books

• Bring Your Cornell ID

• Name & NetId on Each Page

4/23/17 Prelim 2 Review Part 1 2

What is on the Exam?

• The big topics

 Nested Lists & Dictionaries (A3, Lab 8)

 Recursion (A4, Lab 9)

 Defining classes (Lab 10, Lab 11, A4)

 Inheritance and subclasses (Lab 11)

 Name Resolution

 While Loops & Invariants

4/23/17 Prelim 2 Review Part 1 3

What is on the Exam?

• The big topics

 Nested Lists & Dictionaries (A3, Lab 8)

 Recursion (A4, Lab 9)

 Defining classes (Lab 10, Lab 11, A4)

 Inheritance and subclasses (Lab 11)

 Name Resolution

 While Loops & Invariants

4/23/17 Prelim 2 Review Part 1 4

What is on the Exam?

• The big topics

 Nested Lists & Dictionaries (A3, Lab 8)

 Recursion (A4, Lab 9)

 Defining classes (Lab 10, Lab 11, A4)

 Inheritance and subclasses (Lab 11)

 Name Resolution

 While Loops & Invariants

4/23/17 Prelim 2 Review Part 1 5

4/23/17 Prelim 2 Review Part 1 6

class Customer(_______):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]"""

4/23/17 Prelim 2 Review Part 1 7

class Customer(object):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]"""

def __init__(_______________):

"""Initialize a new Customer with name n, optional email e, and

no purchases or spending

Pre: n is a string, e is a string or None"""

Object = Not

a Subclass

4/23/17 Prelim 2 Review Part 1 8

class Customer(object):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]""“

def __init__(self, n, e=None):

"""Initialize a new Customer with name n, optional email e, and

no purchases or spending

Pre: n is a string, e is a string or None"""

Optional

Attribute e

4/23/17 Prelim 2 Review Part 1 9

class Customer(object):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]""“

def __init__(self, n, e=None):

"""Initialize a new Customer with name n, optional email e, and

no purchases or spending

Pre: n is a string, e is a string or None"""

self.name = n

self.email = e

self.purchases = 0

self.spent = 0.0
Note: not everything

you need to initialize

is in the parameters!

4/23/17 Prelim 2 Review Part 1 10

class Customer(object):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]""“

def __str__(_______):

""“Returns String Representation of this customer:

Name (email, if exists)”””

4/23/17 Prelim 2 Review Part 1 11

class Customer(object):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]""“

def __str__(self):

""“Returns String Representation of this customer:

Name (email, if exists)”””

if self.email is None:

return self.name

else:

return self.name +'('+self.email+')'

4/23/17 Prelim 2 Review Part 1 12

class Customer(object):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]"""

def makePurchase(_________):

""“Update customer after making a purchase of c dollars

Pre: c float >= 0.0 ”””

4/23/17 Prelim 2 Review Part 1 13

class Customer(object):

"""Instance is a customer for our company

Attributes:

name: last name [string]

email: e-mail address [string or None if unknown]

purchases: number of items bought, [int >= 0]

spent: money spend at our company [float >= 0.0]"""

def makePurchase(self, c):

""“Update customer after making a purchase of c dollars

Pre: c float >= 0.0 ”””

self.purchases += 1;

self.spent += c;

4/23/17 Prelim 2 Review Part 1 14

class PrefCustomer(_____________):

"""An instance is a 'preferred' customer, a Subclass of Customer.

Mutable attributes (in addition to Customer):

level: level of preference [One of 'bronze', 'silver', 'gold'] """

4/23/17 Prelim 2 Review Part 1 15

class PrefCustomer(Customer):

"""An instance is a 'preferred' customer, a Subclass of Customer.

Mutable attributes (in addition to Customer):

level: level of preference [One of 'bronze', 'silver', 'gold'] """

def __init__(__________________):

"""Initialize a new PrefCustomer with name n, optional email e, and

no purchases or spending, and level l

Pre: n is a string, e is a string or None"""

Superclass in

the Header

We are

“overloading” the

initializer

4/23/17 Prelim 2 Review Part 1 16

class PrefCustomer(Customer):

"""An instance is a 'preferred' customer, a Subclass of Customer.

Mutable attributes (in addition to Customer):

level: level of preference [One of 'bronze', 'silver', 'gold'] """

def __init__(self, n, l, e=None):

"""Initialize a new PrefCustomer with name n, optional email e, and

no purchases or spending, and level l

Pre: n is a string, e is a string or None"""

Customer.__init__(self,n,e=e)

self.level = l

Call the Superclass

initializer explicitly

as a helper!__str__,

makePurchase

“Inherited” from

Parent Class

• What is ‘self’?

 Not just a random thing you stick in front of stuff in

Classes!!!

 Contains the ID of the object on which the method

was called

• Why is self.method() preferred to

ClassName.method(self) ?

 If a class is extended with a subclass, self may refer

to an object of the subclass, and method() may be

overloaded in the subclass.

Notes on ‘self’

4/23/17 Prelim 2 Review Part 1 17

What is on the Exam?

• The big topics

 Nested Lists & Dictionaries (A3, Lab 8)

 Recursion (A4, Lab 9)

 Defining classes (Lab 10, Lab 11, A4)

 Inheritance and subclasses (Lab 11)

 Name Resolution

 While Loops & Invariants

4/23/17 Prelim 2 Review Part 1 18

Name Resolution (from P2 Fall 2013)

4/23/17 Prelim 2 Review Part 1 19

Execute the Following:

1) a.y

2) a.z

3) b.y

4) B.y

Name Resolution (from P2 Fall 2013)

4/23/17 Prelim 2 Review Part 1 20

Execute the Following:

1) a.y 1

2) a.z error

3) b.y 3

4) B.y 4

Name Resolution (from P2 Fall 2013)

4/23/17 Prelim 2 Review Part 1 21

Execute the Following:

1) a.f()

2) b.f()

3) a.f

4) A.g(b)

Name Resolution (from P2 Fall 2013)

4/23/17 Prelim 2 Review Part 1 22

Execute the Following:

1) a.f() 4

2) b.f() 17

3) a.f <method A.f >

4) A.g(b) 10

What is on the Exam?

• The big topics

 Nested Lists & Dictionaries (A3, Lab 8)

 Recursion (A4, Lab 9)

 Defining classes (Lab 10, Lab 11, A4)

 Inheritance and subclasses (Lab 11)

 Name Resolution

 While Loops & Invariants

4/23/17 Prelim 2 Review Part 1 23

• What’s an Invariant?

 An assertion (usually a condition) that is supposed to

"always" be true in a piece of code

 If temporarily invalidated, must make it true again

• Loop Invariant – An assertion that should be true

before and after every iteration of the loop

• Class Invariant – assertion on value of attribute

 E.g. [int, 0…maxValue]

Invariants

4/23/17 Prelim 2 Review Part 1 24

• Initialize: Make Invariant True to start

• Terminate: Figure out where your loop

should stop and translate this into your

while loop condition

• Write the loop body to make progress

toward termination and keep invariant True

• Note: Pay attention to range:

Note: a..b <=> range(a, b+1)

While Loop Development Tips

4/23/17 Prelim 2 Review Part 1 25

While Loop Function

def e_approximate(x, tol):

"""Returns: an integer giving the number of taylor series

terms neccessary for an approximation of e^x that is

between -tol and +tol of the actual value.

You can assume the math module is imported.

A taylor series approximation for e^x is the sum of

x^n / factorial(n), plus 1. That is to say, a two term

approximation is:

e^x ~ 1 + x^1/factorial(1) + x^2/factorial(2)

Pre: x is an int, tol a float. """

4/23/17 Prelim 2 Review Part 1 26

You would be given

more details of any math

concept used on an exam

While Loop Function

def e_approximate(x, tol):

""“Spec"""

target = math.exp(x)

#invariant: approx is the taylor series approximation of e^x

#with n terms

4/23/17 Prelim 2 Review Part 1 27

While Loop Function

def e_approximate(x, tol):

""“Spec"""

target = math.exp(x)

#invariant: approx is the taylor series approximation of e^x

#with n terms

n = 0

approx = 1.0

4/23/17 Prelim 2 Review Part 1 28

While Loop Function

def e_approximate(x, tol):

""“Spec"""

target = math.exp(x)

#invariant: approx is the taylor series approximation of e^x

#with n terms

n = 0

approx = 1.0

while abs(approx - target) > tol:

4/23/17 Prelim 2 Review Part 1 29

While Loop Function

def e_approximate(x, tol):

""“Spec"""

target = math.exp(x)

#invariant: approx is the taylor series approximation of e^x

#with n terms

n = 0

approx = 1.0

while abs(approx - target) > tol:

n += 1

approx += x**n / float(math.factorial(n))

return n

4/23/17 Prelim 2 Review Part 1 30

Note: setting n=1 and

flipping the while loop

statements violates the

invariant!

Good Luck!

4/23/17 Prelim 2 Review Part 1 31

