
Prelim 1 Review

Spring 2017

CS 1110

Exam Info

• Prelim 1: 7:30–9:00PM, Tuesday, March 14th

 Baker Lab 200, Rockefeller Hall 201, 203

 No Electronics, No Notes, Closed book.

 Bring your Cornell ID

 Put your Name & NetId on Each Page!!!

3/12/17 Prelim 1 Review 2

What is on the Exam?

• String slicing functions (A1, Lab 3)

• Booleans & Conditionals (Lab 1, Lab 5)

• Testing and debugging (A1, Lab 3)

• Object and Memory Diagramming (A2)

• Working with Objects (Lab 5)

• Lists and For-Loops (Lab 6)

• Terminology

3/12/17 Prelim 1 Review 3

Not a Complete

list, but the major

Highlights…

What is on the Exam?

• String slicing functions (A1, Lab 3)

• Booleans & Conditionals (Lab 1, Lab 5)

• Testing and debugging (A1, Lab 3)

• Object and Memory Diagramming (A2)

• Working with Objects (Lab 5)

• Lists and For-Loops (Lab 6)

• Terminology

3/12/17 Prelim 1 Review 4

What are Objects?

• An object is like a folder; It contains other

variables (Attributes) with values

• Extends the built in Types in Python

• It has a unique ID that identifies it

 Cannot ever change

 Has no meaning; only identifies

• Classes provide a “Template”

3/12/17 Prelim 1 Review 5

Working with Objects

• 3 Major things we’ll ask you to do with objects:

 Access Attributes of an object

 Create a new object

 Modify an existing object (objects are mutable)

3/12/17 Prelim 1 Review 6

Example

• Class: Length

 Constructor function: Length(ft,in)

 Remember constructor is just a function that

gives us back a mutable object of that type

 Attributes:

3/12/17 Prelim 1 Review 7

Attribute Invariant

feet int, non-negative, = 12 in

inches int, within range 0..11

Accessing Object Attributes

def area(len1,len2):

"""Returns: Area of a rectangle (float) with sides

len1 and len2 in square feet

Parameter len1: the first length

Parameter len2: the second length

Precondition: len1, len2 length objects"""

pass # implement me

3/12/17 Prelim 1 Review 8

Accessing Object Attributes

def area(len1,len2):

"""Returns: Area of a rectangle (float) with sides

len1 and len2 in square feet

Parameter len1: the first length

Parameter len2: the second length

Precondition: len1, len2 length objects"""

len1_ft = len1.feet + len1.inches/12.0

len2_ft = len2.feet + len2.inches/12.0

return len1_ft * len2_ft

3/12/17 Prelim 1 Review 9

Accessing Object Attributes

def area(len1,len2):

"""Returns: Area of a rectangle (float) with sides

len1 and len2 in square feet

Parameter len1: the first length

Parameter len2: the second length

Precondition: len1, len2 length objects"""

len1_ft = len1.feet + len1.inches/12.0

len2_ft = len2.feet + len2.inches/12.0

return len1_ft * len2_ft

3/12/17 Prelim 1 Review 10

Why divide by

12.0, not 12?

Let’s Diagram this!

1 def area(len1,len2):

2 ""“Spec"""

3 len1_ft = len1.feet + len1.inches/12.0

4 len2_ft = len2.feet + len2.inches/12.0

5 return len1_ft * len2_ft

6

7 a1 = Length(1, 6)

8 a2 = Length(2, 0)

9 rect_area = area(a1, a2)

3/12/17 Prelim 1 Review 11

Creating New Objects

def difference(len1,len2):

"""Returns: A length object that is the Difference

between len1 and len2

Parameter len1: the first length

Precondition: len1 is a length object longer than

len2

Parameter len2: the second length

Precondition: len2 is a length object shorter than

len1"""

pass # implement me

3/12/17 Prelim 1 Review 12

Creating New Objects

def difference(len1,len2):

""“spec"""

new_feet = len1.feet – len2.feet

new_inches = len1.inches – len2.inches

if new_inches < 0:

new_feet = new_feet – 1

new_inches = new_inches + 12

return Length(new_feet, new_inches)

3/12/17 Prelim 1 Review 13

A slight twist: modifying objects

def difference2(len1,len2):

"""Modifies len1 by subtracting len2 from it

Parameter len1: the first length

Precondition: len1 is a length object longer than

len2

Parameter len2: the second length

Precondition: len2 is a length object shorter than

len1"""

pass # implement me

3/12/17 Prelim 1 Review 14

A slight twist: modifying objects

def difference2(len1,len2):

""“spec"""

new_feet = len1.feet – len2.feet

new_inches = len1.inches – len2.inches

if new_inches < 0:

new_feet = new_feet – 1

new_inches = new_inches + 12

len1.feet = new_feet

len1.inches = new_inches

3/12/17 Prelim 1 Review 15

For Loops

3/12/17 Prelim 1 Review 16

• Syntax:

for item in list:

<do something>

• Range Function:

 range(n) returns a list [0, 1, 2, …. n-2, n-1]

 This list has n elements

 MUST use for modifying a list, so you can get the

indices

Useful List Methods

Method Result

x.index(a) Returns first position of a in x; error if not there

x.append(a) Modify x to add element a to the end

x.insert(a,k) Modify x to put a at position k (and move rest to right)

x.remove(a) Modify x to remove first occurrence of a

x.sort() Modify x so that elements are in sorted order

3/12/17 Prelim 1 Review 17

• We will give you any methods you need.

 Note: No x.find(a) for lists!

 But you must know how to slice lists!

For-Loop in a Fruitful Function

def replace(thelist,a,b):

"""Returns: COPY of thelist with all occurrences of a
replaced by b

Example: replace([1,2,3,1], 1, 4) = [4,2,3,4].

Parameter thelist: list to copy
Precondition: thelist is a list of ints

Parameter a: the value to remove
Precondition: a is an int

Parameter b: the value to insert
Precondition: b is an int """

return [] # Stub return. IMPLEMENT ME

3/12/17 Prelim 1 Review 18

For-Loop in a Fruitful Function

def replace(thelist,a,b):

"""Returns: COPY of thelist with all occurrences of a
replaced by b

Example: replace([1,2,3,1], 1, 4) = [4,2,3,4]."""

result = [] # Accumulator

for x in thelist:

if x == a:

result.append(b)

else:

result.append(x)

return result

3/12/17 Prelim 1 Review 19

An Alternate Solution

def replace(thelist,a,b):

"""Returns: COPY of thelist with all occurrences of a
replaced by b

Example: replace([1,2,3,1], 1, 4) = [4,2,3,4]."""

result = [] # Accumulator

for i in range(len(thelist)):

if thelist[i] == a:

result.append(b)

else:

result.append(thelist[i])

return result

3/12/17 Prelim 1 Review 20

An Alternate Solution

def replace(thelist,a,b):

"""Returns: COPY of thelist with all occurrences of a
replaced by b

Example: replace([1,2,3,1], 1, 4) = [4,2,3,4]."""

result = [] # Accumulator

for i in range(len(thelist)):

if thelist[i] == a:

result.append(b)

else:

result.append(thelist[i])

return result

3/12/17 Prelim 1 Review 21

How would you

write this

function if it was

to modify thelist

instead?

Good Luck!

3/12/17 Prelim 1 Review 22

