
Loop Invariants &

Sequence Algorithms

CS1110 Final Exam Review Session 1

Spring 2017

• String, list, and dictionary processing (for loops)

• Testing and debugging

• Objects, classes (+ subclasses and inheritance)

• Name resolution

• Frames and the call stack

• Recursion

• While loops & invariants

• Sequence and sorting algorithms

On the Exam (May 18th 9am, Barton):

5/14/17 Final Exam Review Part 1 2

• String, list, and dictionary processing (for loops)

• Testing and debugging

• Objects, classes (+ subclasses and inheritance)

• Name resolution

• Frames and the call stack

• Recursion

• While loops & invariants

• Sequence and sorting algorithms

On the Exam (May 18th 9am, Barton):

5/14/17 Final Exam Review Part 1 3

• Pay attention to range:

a..b or a+1..b or a…b-1 or …

• This affects the loop condition!

 Range a..b-1, has condition k < b

 Range a..b, has condition k < b +1

• Note that a..a-1 denotes an empty range

 There are no values in it

• Note: b[a:b] in python represents b[a..b-1]

Notes on Range Notation

5/14/17 Final Exam Review Part 1 4

• DO use variables given in the invariant.

• DON’T use other variables.

invariant: b[h..] contains the sum of c[h..] and

d[k..],

except that the carry into position k-1 is in 'carry'

while ___________ :

Okay to use b, c, d, h, k, and carry

Anything else should be ‘local’ to while

DOs and DON’Ts #1

5/14/17 Final Exam Review Part 1 5

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:

1. b[0..k–1] is sorted (i.e. its values are in ascending order)

2. Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]

Given index h of the first element of a segment and

index k of the element that follows that segment,

the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

b

0 h k

h h+1

(h+1) – h = 1

b <= sorted >=

0 k

len(b)

5/14/17 Final Exam Review Part 1 6

• DON’T put variables directly above vertical line.

 Where is j?

 Is it unknown or >= x?

 Lines are BETWEEN elements and hence have no

index associated with them

DOs and DON’Ts #2

<= x x ? >= x

h i j k

b

5/14/17 Final Exam Review Part 1 7

What we’ll ask you to do on the exam

• Write body of a loop to satisfy a given invariant.

• Given an invariant with code, identify all errors.

• Given an example, rewrite it with new invariant.

• You will NOT be responsible for coming up

with your own invariants during this timed exam

(e.g. as on A5 in generate food grid).

5/14/17 Final Exam Review Part 1 8

Why Invariants??

• Suppose you were trying to sum up all of the

elements of a list b:

 Even if we were constrained to only use while loops

there are many possible solutions…

5/14/17 Final Exam Review Part 1 9

i = 0

tot = 0

inv #1: total is sum of b[0..i-1]

while i < len(b):

tot += b[i]

i += 1

return tot

Why Invariants??

5/14/17 Final Exam Review Part 1 10

i = 0

tot = 0

inv #1: total is sum of b[0..i-1]

while i < len(b):

tot += b[i]

i += 1

return tot

i = -1

tot = 0

inv #2: total is sum of b[0..i]

while i < len(b) -1:

tot += b[i+1]

i += 1

return tot

Why Invariants??

5/14/17 Final Exam Review Part 1 11

i = 0

tot = 0

inv #1: total is sum of b[0..i-1]

while i < len(b):

tot += b[i]

i += 1

return tot

i = -1

tot = 0

inv #2: total is sum of b[0..i]

while i < len(b) -1:

tot += b[i+1]

i += 1

return tot

Why Invariants??

i = len(b)

tot = 0

inv #3: total is sum of b[i..len(b)-1]

while i > 0:

tot += b[i-1]

i -= 1

return tot

5/14/17 Final Exam Review Part 1 12

Why Invariants??

• Suppose you were trying to sum up all of the

elements of a list b:

 Even if we were constrained to only use while loops

there are many possible solutions…

• An invariant is a theoretical tool to help you

understand that a loop is working correctly

• Invariants also help you design complicated

loops (Including Assignment 5!) by telling the

programmer the state of what has been done.

5/14/17 Final Exam Review Part 1 13

• What’s an Invariant?

 An assertion that is supposed to "always" be true

 If temporarily invalidated, must make it true again

• Loop Invariant – An assertion that should be true

before and after every iteration of the loop

 E.g. tot is the sum of elements b[0..i-1].

 References the loop variables (tot and i loop vars)

• Class Invariant – assertion on value of attribute

 E.g. [int, 0…maxValue]

Definitions

5/14/17 Final Exam Review Part 1 14

Algorithm Inputs

• We may specify that the list in the algorithm is

 b[0..len(b)-1] or

 a segment b[h..k] or

 a segment b[m..n-1]

• Work with whatever is given!

• How many elements are in this array?

 b[h..k] has k+1–h elements

?

h k

b

5/14/17 Final Exam Review Part 1 15

1. Identify Range: [0..len(b) -1], [h..k], other?

2. Identify Loop variables and direction(s) of processing

3. Draw Box Diagram for the Invariant

4. “Push” invariant boundary lines to Precondition state to find the

initialization conditions

5. “Push” invariant boundary lines to Postcondition state to find

the termination condition

6. Flip the termination condition to its opposite to get the while

loop condition (Use strict inequalities: <, >, or !=; not <= or >=)

7. Identify the next element to process (i? i+1? i-1?)

8. Write inside of loop to process next element and make progress

Steps to Tackle many invariant problems

5/14/17 Final Exam Review Part 1 16

A Simple Example

def sum_htok(b, h, k):

“““Sum all the elements in a list from position h to (and including)

position k ”””

i =

tot =

inv: tot is the sum of b[i+1..k]

while :

post: tot is the sum of b[h..k]

return tot

5/14/17 Final Exam Review Part 1 17

A Simple Example

def sum_htok(b, h, k):

“““Sum all the elements in a list from position h to (and including)

position k ”””

i = k

tot = 0

inv: tot is the sum of b[i+1..k]

while i > h -1 :

tot += b[i]

i = i - 1

post: tot is the sum of b[h..k]

return tot

5/14/17 Final Exam Review Part 1 18

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j =
q =

inv: b[h..j–1] <= x = b[j] <=

b[q+1..k]

while :

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x

5/14/17 Final Exam Review Part 1 19

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j =
q =

inv: b[h..j–1] <= x = b[j] <=

b[q+1..k]

while :

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x <= x

h j q k

inv: b x ??? >= x

5/14/17 Final Exam Review Part 1 20

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j = h
q = k

inv: b[h..j–1] <= x = b[j] <=

b[q+1..k]

while j < q:

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x <= x

h j q k

inv: b x ??? >= x

5/14/17 Final Exam Review Part 1 21

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j = h
q = k

inv: b[h..j–1] <= x = b[j] <=

b[q+1..k]

while j < q:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[q]

q=q–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x <= x

h j q k

inv: b x ??? >= x

5/14/17 Final Exam Review Part 1 22

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j =

m =

inv: b[h..j–1] <= x = b[j] <=
b[j+1..m]

while :

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x

5/14/17 Final Exam Review Part 1 23

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j = h

m = h

inv: b[h..j–1] <= x = b[j] <=
b[j+1..m]

while :

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x <= x

h j m k

inv: b x >= x ???

5/14/17 Final Exam Review Part 1 24

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j = h

m = h

inv: b[h..j–1] <= x = b[j] <=
b[j+1..m]

while m < k:

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x <= x

h j m k

inv: b x >= x ???

5/14/17 Final Exam Review Part 1 25

Partition Example

Make invariant true at start
j = h
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

if b[j+1] <= b[j]:

swap b[j] and b[j+1]

j = j+1

else:
swap b[j+1] and b[t-1]

t=t–1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

Make invariant true at start
j = h

m = h

inv: b[h..j–1] <= x = b[j] <=
b[j+1..m]

while m < k:

if b[m+1] <= b[j]:

swap b[j] and b[m+1]

swap b[j+1] and b[m+1]

m = m+1; j=j+1

else:
m = m+1

post: b[h..j–1] <= x = b[j] <=
b[j+1..k]

<= x

h j t k

inv: b x ??? >= x <= x

h j m k

inv: b x >= x ???

5/14/17 Final Exam Review Part 1 26

DNF – ID broken invariants

def dnf (b, h, k):

"""Returns: partition points as a tuple (i,j)"""

t = h; i = k+1, j = k;

inv: b[h..t] < 0, b[t+1..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

while t < i:

if b[i-1] < 0:

swap(b,i-1,t)

t = t+1

elif b[i -1] == 0:

i = i-1

else:

swap(b,i-1,j)

i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

return (i , j)

5/14/17 Final Exam Review Part 1 27

DNF – ID broken invariants

def dnf (b, h, k):

"""Returns: partition points as a tuple (i,j)"""

t = h h-1; i = k+1, j = k;

inv: b[h..t] < 0, b[t+1..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

while t < i t+1 < i:

if b[i-1] < 0:

swap(b,i-1,t t+1)

t = t+1

elif b[i -1] == 0:

i = i-1

else:

swap(b,i-1,j)

i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

return (i , j)

5/14/17 Final Exam Review Part 1 28

Other Searching & Sorting

• Mergesort / Quicksort: Partition on each side of

the list and then merge back together

• Selection sort: find minimum value in part of the

list, swap it with next element to check

• Linear search: check each next element, if you

found what you’re looking for return.

• Binary search: on a sorted list, look at middle

element, and then look at the side where the

element might fall if middle not what you want

5/14/17 Final Exam Review Part 1 29

Good Luck!

5/14/17 Final Exam Review Part 1 30

