
Lists and Sequences

Assign 5 to element 2
and –4 to element 0

Overview of List Syntax

• x = [0, 0, 0, 0]

• x.append(2)

• 3 in x

• x[2] = 5
• x[0] = –4

• k = 3
• x[k] = 2 * x[0]
• x[k–2] = 6

4300112

4300112x

3k

✗0 -4
✗0 6
✗0 5
✗0 -8
2

0
1
2
3
4

Assign -8 to x[3]
and 6 to x[1]

Create list of length
4 with all zeroes

Append 2 to end of
list x (now length 5)
Evaluates to False

(3 not in x)

Lists
• Creation

x = [a1, a2, a3, …]
Can contain anything

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is anelement

• Can
concatenate y =
x + [1, 2] Makes
a new list

• Is mutable
x.append(5)

vs. Strings
• Creation

x = 'Hello'
Only contains chars

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is a substring

• Can concatenate
y = x + ' World'
Makes a new string

• Is not mutable

vs. Tuples
• Creation

x = (a1, a2, a3, …)
Can contain anything

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is anelement

• Can
concatenate y =
x + (1, 2) Makes a
new tuple

• Is not mutable

Lists vs. Strings
• Creation

x = [a1, a2, a3, …]
Can contain anything

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is anelement

• Can
concatenate y =
x + [1, 2] Makes
a new list

• Is mutable
x.append(5)

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is a substring

• Can concatenate
y = x + ' World'
Makes a new string

• Is not mutable

vs. Tuples
• Creation

• len(x) is length
• Supports slicing

Example: x[1:2]
x[i] is anelement

• Can
concatenate y =
x + (1, 2) Makes a
new tuple

• Is not mutable

x = (a1, a2, a3, …s)emester,xb=u'tHwelloor'k
Can contain anythainlmg ost likOenllyisctosndtaoi.nschars

Did not use this semester but
works almost like lists do

Quick for loop review

Basic Structure:

for <placeholder variable> in <list to loop through>:
do something...

Two general forms:

thelist = [’a’, ‘b’, ‘c’, ‘d’]
for foo in thelist:

print foo

thelist = [’a’, ‘b’, ‘c’, ‘d’]
for index in range(len(thelist)):

print thelist[index]

Loops through the
elements of thelist

Loops through the
indicies of thelist

Think about what range really
returns!

range(4) >> [0,1,2,3]
range(1) >> [0]

Modified Question 4 from Fall 2011

Each elements in the list scores contains the number of students
who received score i on a test. For example, if 30 students got 85,
then scores[85] is 30.Write the body of function histogram, which
returns a histogram as a list of strings. (You need not write loop
invariants.) For example, if scores = [7, 0, 4, 3, 2, 0, …] then the
first elementsof the resulting string list are:

'00 ******* '
'01 '
'02 ****'
'03 ***'
'04 *'
'05 '

Modified Question 4 from Fall 2011

def histogram(scores):
"""Return a list of Strings (call it s) in which each s[i] contains:

(1) i, as a two-digit integer (with leading zeros if necessary)
(2) a blank,
(3) n asterisks '*', where n is scores[i].

Precondition: scores is a list of nonnegative integers,
len(scores) < 100"""
IMPLEMENT ME

Modified Question 4 from Fall 2011
def histogram(scores):

"""Return a list of Strings (call it s) in which each s[i] contains:
(1) i, as a two-digit integer (with leading zeros if necessary)
(2) a blank,
(3) n asterisks '*', where n is scores[i].

Precondition: scores is a list of nonnegative integers, len(scores) < 100"""
s = [] # List to contain the result.

for i in range(len(scores)): # Need the value i, not the elements of scores
if scores[i] < 10:

row = str(scores[i]) + ‘ ‘
else:

row = ‘0’ + str(scores[i]) + ‘ ‘ # Add a 0 for double digits
for n in range(scores[i]):

row = row + ‘*’ # Append scores[i] number of asterisks
s.append(row)

return s

Overview of Two-Dimensional Lists

• Access value at row 3, col 2:

d[3][2]

• Assign value at row 3, col 2:

d[3][2] = 8

• An odd symmetry

§§Number of rows of d:

§§Number of cols in row r of d:

0 1 2 3

d 0 5 4 7 3

1 4 8 9 7
2 5 1 2 3

3 4 1 2 9

4 6 7 8 0

len(d)
len(d[r])

How Multidimensional Lists are Stored

• b = [[9, 6, 4], [5, 7, 7]]

• b holds name of a one-dimensional list
§§ Has len(b) elements
§§ Its elements are (the names of) 1D lists

• b[i] holds the name of a one-dimensional list (of ints)
§§ Has len(b[i]) elements

82799054

9
6
4

43001122

5
7
7

23457811

82799054
43001122

23457811b

9 6 4
5 7 7

Modified Question 4 from Fall 2010
Recall drawing GRectangles in A7. Write method
placeSquares, whose requirements appear below. It draws
square bricks as shown to the right and returns them as a 2d list
of GRectangle

def placeSquares(self, m):
"""Create a list of m x m squares (GRectangle), as
specified below, adding the squares to the GUI, and
return the list."""

Method Requirements:
§§ There are m columns and rows of squares; precondition: 0 < m.
§§ Each square has side length BRICK_SIDE; there is no space between them.
§§ The bottom-left square is at the bottom-left corner (0,0) of the GUI.

Squares in columns and rows 0 and m-1 have color colormodel.PINK
§§ Inner squares have checkerboard pattern of colormodel.RED and

colormodel.GREEN, as shown (bottom-left one is green; one next to it, red).

Modified Question 4 from Fall 2010
Recall drawing GRectangles in A7. Write method
placeSquares, whose requirements appear below. It draws
square bricks as shown to the right and returns them as a 2d list
of GRectangle

def placeSquares(self, m):
"""Create a list of m x m squares (GRectangle), as
specified on last slide, adding them to the GUI, and
return the list."""

API Reminders:
§§ GRectangle has attributes pos (a 2 element tuple),

size (a 2 element tuple), fillcolor, and linecolor

§§ You construct a GRectangle with keyword arguments:
GRectangle(pos=(0,0),size=(10,10))

§§ You add to the GUI with self.view.add(…)

def placeSquares(self, m):
"""Place the m x m Bricks, as requested on the exam and return the list"""
bricks = []; r = 0 # Make a new list to represent the whole grid
while r < m: # Place col c of bricks

row = []; c = 0 # Make a new list to represent rows
while c < m:

color = colormodel.RED
if r == 0 or r == m-1 or c == 0 or c == m-1:

color = colormodel.PINK
elif r+c % 2 == 0:

color = colormodel.GREEN
brick=GRectangle(pos=(r*BRICK_SIDE,c*BRICK_SIDE), fillcolor=color

size=(BRICK_SIDE,BRICK_SIDE), linecolor=color)
row.append(brick)
self.view.add(brick)
c = c+1

bricks.append(row)
r = r+1

return bricks

Ragged Lists: Rows w/ Different Length

• b = [[17,13,19],[28,95]]

• To create a ragged list
• Create b as an empty list (b =[])
• Create each row as a list (r1 = [17,13,19]; r2 = [28,95])
• Append lists to b (b.append(r1);b.append(r2))

82799054

17
13
19

43001122

28
95

23457811
23457811b

43001122
0 82799054

1
0
1

0
1
2

Modified Question 4 from Fall 2011
Someone messed up a method to create certain arrays for us. For example (and
this is only an example), they produced the array:

3 1 2 1 2 3
2 1 7 8 5 instead of 1 7 8 5 2
5 the array 5
6 8 8 6

Thus, they put the last value of each row at the beginning instead of the end.
Write a procedure that fixes this by rotating each row one position to the left;
each element is moved one position earlier, and the first element is placed in
the last position. Do not use recursion. DO NOT RETURN A VALUE.

def rotate(b):
"""Rotate each row one position to the left, as explained
above. Precondition: b is a list, might be ragged, and each
row has >= 1 value"""

Modified Question 4 from Fall 2011
def rotate(b):

"""Rotate each row one position to the left, as explained on the previous
slide. Precondition: b is a list, might be ragged, and each row has >= 1
value"""
invariant: rows 0..r–1 of b have been rotated
r = 0
while r < len(b):

first = b[r][0] # Rotate row r one position to the left;
inv: b[r][1..c–1] moved to b[r][0..c–2]
c = 1
while c < len(b[r])

b[r][c-1]= b[r][c];
c= c+1

post: b[r][1..] has been moved to b[r][0..]
b[r][len(b[r])–1]= first
r = r+1

post: rows 0..b.length–1 of b has been rotated

Dictionaries

Overview of Dictionary Syntax

• Creation

• Insertion

• Modification

d = dict()
d = {}

These	two	do	the	exact	same	
thing!	Creates	an	empty	

dictionary

d[’new_key’] = ‘new_value’ Adds	’new_value’	to	d	with	the	
key	of	‘new_key’

d[’new_key’] = ‘even_newer_value’
Changes	the	value	at	‘new_key’	to	

‘even_newer_value’

Note: Insertion and Modification has the same syntax!
Whether it modifies or not depends on if the key is already

in the dictionary

Overview of Dictionary Syntax

• Creation

• Insertion

• Modification

• Search

• Deletion

d = dict()
d = {}

These	two	do	the	exact	same	
thing!	Creates	an	empty	

dictionary

d[’new_key’] = ‘new_value’ Adds	’new_value’	to	d	with	the	
key	of	‘new_key’

d[’new_key’] = ‘even_newer_value’
Changes	the	value	at	‘new_key’	to	

‘even_newer_value’

’new_key’ in d >> returns True
‘random_key’ in d >> returns False

Use	the	’in’	keyword	to	check	if	a	
key	is	in	the	dictionary

del d[‘new_key’]
Deletes	key-value	pair:	’new_key’	is	

removed	along	with	its	value,	
‘even_newer_value’

Histograms Revisited (Dictionaries)

def histogram(scores):
"""Return a histogram where the key value pair is:

(score, number of occurrences)
so that every score in scores is represented.
If there a score is not in scores, then it does not need to be
reflected in the dictionary with (score, 0).

Precondition: scores is a list of nonnegative integers, len(scores) <
100"""
IMPLEMENT ME

def histogram(scores):
"""Return a histogram where the key value pair is:

(score, number of occurrences)
so that every score in scores is represented.
If there a score is not in scores, then it does not need to be
reflected in the dictionary with (score, 0).

Precondition: scores is a list of nonnegative integers, ‘
len(scores) < 100""
histogram = dict() # Could have also written histogram = {}
for score in scores:

if score in histogram: # Check if this score is already in histogram
histogram[score] += 1

else:
histogram[score] = 1

return histogram

Histograms Revisited (Dictionaries)

def histogram(scores):
"""Return a histogram where the key value pair is:

(score, number of occurrences)
so that every score in scores is represented.
If there a score is not in scores, then it does not need to be
reflected in the dictionary with (score, 0).

Precondition: scores is a list of nonnegative integers, ‘
len(scores) < 100""
histogram = dict() # Could have also written histogram = {}
for score in scores:

if score in histogram: # Check if this score is already in histogram
histogram[score] += 1

else:
histogram[score] = 1

return histogram

Histograms Revisited (Dictionaries)

Very common idiom. Make
sure you’re familiar with it!

Python Basics

Basic Types

• Strings (str)

• Booleans (bool)

• Integers (int)

• Floats (float)

Literals surrounded in quotes: “Hello World!”

Two possible values: True or False

Represents whole numbers: …-1, 0, 1, 2, 3…

Represents decimals: -0.1, 1.4445, 2.48935,…

Booleans (bool)

Represents logical statements!

Operators: not, and, or
• not b: True if b is false and False if b is true (negation)
• a and b: True if both a and b are true and False otherwise.
• a or b: True if a is true or b is true and False otherwise.

Often are results of comparisons:
• Order comparison:

• a < b; a <=b; a >= b; a > b
• Equality comparison:

• a == b; a != b

Short Circuiting:
• (False and x / 0) vs (x / 0 and False)
• (True or x / 0) vs (x / 0 or True)

Strings (str)

Used to represent text.

Anything surrounded in either single quotes or double quotes is a string.

Operators: + (concatenation)
• “Hello ” + ‘World!’ >> “Hello World!”

Don’t forget about string methods! A few common ones:
• find() and index(); know the difference and what the second optional

argument does
• count()
• split()
• join()

String indexing and splicing:
• You access specific indexes using s[i] where s is the str and i is an int
• Splice substrings using s[i:j]. i is inclusive while j is exclusive

If-statements

Basic Structure:

if <boolean expression>:
do something…

else:
do something…

This lets you control the flow of your code, directing it down branches
depending on certain variables!

Common style problem:

if x == True: # Think about what the type of x is!
do something…

else:
do something…

Questions

