
CS 1110 Spring 2017, Assignment 4: Tournaments∗

Due on CMS Thursday April 20th, 2017, 11:59pm. As usual, we strongly recommend that you submit a
preliminary version by 2pm the day of the deadline, for the usual reasons.1

Necessary files: download and unzip http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment4/a4.zip

1 Introduction

In March and early April, bracket diagrams like the one depicted below2 sprout up everywhere:

16

1

9

8

12

5

13

4

11

6

14

3

10

7

15

2

16

1

9

8

12

5

13

4

11

6

14

3

10

7

15

2

16

1

9

8

12

5

13

4

11

6

14

3

10

7

15

2

16

1

9

8

12

5

13

4

11

6

14

3

10

7

15

2

APRIL 1 AND 3

PHOENIX

APRIL 3

Watch On

 DAYTON
MARCH 14–15

First Round
MARCH 16–17

First Round
MARCH 16–17

Second Round
MARCH 18–19

Second Round
MARCH 18–19

Regional
Semifinals

MARCH 23–24

Regional
Finals

MARCH 25–26

National
Semifinals

APRIL 1

Regional
Semifinals
MARCH 23–24

Regional
Finals
MARCH 25–26

National
Semifinals
APRIL 1

Watch the tournament on these networks
or online at NCAA.COM/MARCHMADNESS

NATIONAL
CHAMPIONSHIP

#MarchMadness

2016 DIVISION I MEN’S BASKETBALL CHAMPIONSHIP BRACKET

SOUTH

MIDWEST

WEST

EAST

S E MW E

March 16 and 18 first-/second-round sites: Buffalo, Milwaukee, Orlando, Salt Lake City. March 17 and 19 first-/second-round sites: Greenville, Indianapolis, Tulsa, Sacramento.
March 23 and 25 regional sites: Kansas City, San Jose. March 24 and 26 regional sites: Memphis, New York.

The NCAA opposes all forms of sports wagering

Kansas St. (20-13)

Wake Forest (19-13)

Mt. St. Mary’s (19-15)

New Orleans (20-11)

Villanova (31-3)

Virginia Tech (22-10)

Wisconsin (25-9)

Virginia (22-10)

UNC Wilmington (29-5)

East Tenn. St. (27-7)

Florida (24-8)

SMU (30-4)

USC

New Mexico St. (28-5)

Baylor (25-7)

Marquette (19-12)

South Carolina (22-10)

Troy (22-14)

Duke (27-8)

Gonzaga (32-1)

S. Dakota St. (18-16)

Vanderbilt (19-15)

Northwestern (23-11)

Princeton (23-6)

Notre Dame (25-9)

West Virginia (26-8)

Bucknell (26-8)

Maryland (24-8)

Florida St. (25-8)

Fla. Gulf Coast (26-7)

VCU (26-8)

Saint Mary’s (28-4)

North Dakota (22-9)

Arizona (30-4)

Kansas (28-4)

Michigan St. (19-14)

Miami (Fla.) (21-11)

UC Davis

Iowa St. (23-10)

Nevada (28-6)

Vermont (29-5)

Purdue (25-7)

Creighton (25-9)

Iona (22-12)

Oregon (29-5)

Oklahoma St. (20-12)

Michigan (24-11)

Jacksonville St. (20-14)

Louisville (24-8)

North Carolina (27-7)

Seton Hall (21-11)

Arkansas (25-9)

Minnesota (24-9)

Butler (23-8)

Winthrop (26-6)

Cincinnati (29-5)

Kansas St.

Middle Tenn. (30-4)

Kent St. (22-13)

UCLA (29-4)

Wichita St. (30-4)

Dayton (24-7)

Northern Ky. (24-10)

Kentucky (29-5)

N.C. Central (25-8)

UC Davis (22-12)

Providence (20-12)

USC (24-9)11

11

16

16

16

16

11

11

7165 N. Carolina

April 1 April 1

75

73

70

76

77

77

60

74

83

59

N. Carolina 1

N. Carolina 1

7 S. Carolina 73 Oregon 3

1 Gonzaga 77

1 Gonzaga

NEW YORK

SAN JOSE MEMPHIS

KANSAS CITY

83

84

50

70

92

80

75

86

98

66

69

68

61

58

73

71

4 Florida

7 S. Carolina

N. Carolina 1

Kentucky 2

Kansas 1

Oregon 3

1 Gonzaga

11 Xavier

62

65

39

65

79

73

65

74

76

80

71

83

91

66

60

69

78

82

88

81

73

69

72

65

67

79

62

65

90

70

72

75

Purdue 4

8 Wisconsin

4 Florida

11 Xavier

4 W. Virginia

1 Gonzaga

2 Arizona

Butler 4

Kansas 1

Michigan 7

3 Baylor

7 S. Carolina

Oregon 3

N. Carolina 1

UCLA 3

Kentucky 2

Greenville

Milwaukee

Sacramento

Indianapolis

Tulsa

Milwaukee

Sacramento

Indianapolis

Salt Lake City

Buffalo

Orlando

Salt Lake City

Orlando

Tulsa

Greenville

Buffalo

72

81

76

64

66

46

68

66

85

77

100

82

84

73

80

70

76

56

84

74

76

71

80

65

60

58

86

80

65

76

86

80

72

84

93

77

103

64

77

71

75

61

97

80

58

64

79

70

93

73

87

65

100

62

58

78

92

91

78

63

65

66

91

73

Middle Tenn. 12

Butler 4

1 Gonzaga

8 Northwestern

7 Saint Mary’s

2 Arizona

Iowa St. 5

Purdue 4

1 Villanova

5 Virginia

4 Florida

8 Wisconsin

5 Notre Dame

4 West Virginia

11 Xavier

3 Florida St.

Rhode Island 11

Oregon 3

North Carolina 1

Arkansas 8

Cincinnati 6

Wichita St. 10

Kentucky 2

UCLA 3

7 S. Carolina

2 Duke

Kansas 1

Michigan St. 9

Michigan 7

Louisville 2

11 USC

3 Baylor

71

75

63

67

67

66

95

88

Mount St. Mary’s

Texas Southern (23-11)

Xavier (21-13)

Rhode Island (24-9)

PRESENTED BY

Official Corporate Partner of the NCAA®

2017 NCAA® DIVISION I MEN'S BASKETBALL CHAMPIONSHIP BRACKET

FIRST FOUR®

FINAL FOUR®

2017 NCAA DIVISION I MEN'S BASKETBALL CHAMPIONSHIP BRACKET

FIRST FOUR

FINAL FOUR

And it’s not just basketball; there’s brackets for Shakespeare’s plays, Miramax films, Pokémon, and, of course,
brackets. Brackets have a naturally recursive structure that we’ll take advantage of in this assignment.

∗Authors: Lillian Lee, Erik Andersen
1Reminders: you can replace older submissions with improved ones up to the actual deadline. Since you’ve been warned to submit

early, do not expect that we will accept work that doesn’t make it onto CMS on time — by CMS’s definition of time, which may differ
from your watch’s or your computer’s — for whatever reason, including server delays stemming from many other students trying to
submit at the same time.

2The bracket diagram for the 2017 NCAA Men’s Division I Basketball tournament. Image from
http://i.turner.ncaa.com/sites/default/files/external/printable-bracket/2017/bracket-ncaa.pdf. Sorry, Zags.

1

http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment4/a4.zip
http://www.shakespeareances.com/dialogues/commentary/Tournament_Brackets.pdf
https://cdn.miramax.com/media/assets/MM_brackets_PF_2014_blog-1.jpg
http://pokemon.wikia.com/wiki/File:PokemonStarterTournamentBracketFinal.jpg
http://presscoverage.us//images/bracketbracket-final.pdf

Contents

1 Introduction 1

2 Rules (All The Same As For A3) 2

3 Representing Tournament Outcomes 2

4 TODO (aim for end-of-the-day (EOD) Wednesday the 12th): Understand the basics of the Outcome
class design 3
4.1 Attributes . 4
4.2 init . 4

4.2.1 Initializing the winner non-explicitly and with an optional parameter . 4
4.3 str : An example of a recursive method on Outcomes . 4

5 TODO (aim for EOD Thursday the 13th): Finish3 init 4
5.1 The test init test procedure in a4test.py . 4
5.2 Implementation notes . 5

6 TODO (aim for EOD Monday the 17th): Finish4 recursive methods teams() and pathToVictory() 5

7 TODO (aim for afternoon Thursday the 20th): Finish5 recursive method hasHeadToHead() 5

8 TODO (by the submission deadline): Edit your code 6

9 Before You Submit 6

2 Rules (All The Same As For A3)

This assignment, and all subsequent ones unless otherwise noted, will receive a single grade; there is no revise-and-
resubmit like there was for Assignment 1.

You may do this assignment in groups of size one or two. All previous groups have been dissolved by CMS for
this assignment; if you want to work with someone (whether or not you’ve worked with them before), you need to
form your group on CMS before submitting.6

Reminder: If your partnership dissolves, see the course Academic Integrity description about “group divorce” on
what to do.

Our policies are laid out in full on the course Academic Integrity page, but we re-state here the main rules:
where “you” means you and, if there is one, your one CMS-registered group partner,

1. Never look at, access or possess any portion of another group’s work in any form.

2. Never show or share any portion of your work in any form to anyone except a member of the course staff.

3. Never request solutions from outside sources such as online services like StackOverflow.

4. DO specifically acknowledge by name all help you received, whether or not it was “legal” according to (1)-(3).

3 Representing Tournament Outcomes

In a typical tournament set-up, competitors play against each other, and the winners of one game are allowed to
proceed to the next round to play other winners. So, a tournament can be thought of as based on the outcomes
of individual head-to-head games, where the outcomes in one round depend on the outcomes of the games in the
previous round.

To make things concrete, we’ll use Figure 1 as a running example.

3Throughout, by “finish” a method we mean: write test cases for it, then complete its body, and then test it
4Throughout, by “finish” a method we mean: write test cases for it, then complete its body, and then test it
5Throughout, by “finish” a method we mean: write test cases for it, then complete its body, and then test it
6Reminder: This requires actions on the part of both parties. Brief instructions for how to form a CMS group are on the course

Assignment page.

2

http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php#scenario2
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#partnering
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#partnering

Figure 1: Left: A “bracket-like” depiction of the Outcome tree for the so-called “Sweet Sixteen” portion of the
bracket diagram in Section 1. Each arrow-and-dotted-bracket represents an Outcome, where input1 and input2 are
the top and bottom ends of the dotted bracket, and the winner is the string pointed to by the arrow. Right: the
string representation for that Outcome that is produced by the str method we’ve provided you.

• The outcome of the championship game was that North Carolina (the line with no indentation) was the winner,
in a game between Gonzaga (the first line that’s indented one level) and North Carolina (the other line that’s
indented one level).

– The reason that Gonzaga got to play in the championship was that the outcome of the final-four game
between South Carolina (the first line under the one-level Gonzaga line that’s indented two levels) and
Gonzaga (the other line under the one-level Gonzaga line that’s indented two levels) was that Gonzaga
was the winner.

– The reason that North Carolina got to play in the championship was that the outcome of the final-four
game between Oregon (the first line under the one-level North Carolina line that’s indented two levels)
and North Carolina (the other line under the one-level North Carolina line that’s indented two levels) was
that North Carolina was the winner.

∗ The reason North Carolina got to play in the final-four was that the outcome of the elite-eight game
between North Carolina and Kentucky was that North Carolina was the winner.

... and so on. Sounds recursive, doesn’t it?
Hence, we’ve created a class Outcome to represent outcomes.

4 TODO (aim for end-of-the-day (EOD) Wednesday the 12th): Under-
stand the basics of the Outcome class design

Carefully read over the Outcome class specification given in a4.py.

3

4.1 Attributes

Why do we allow attributes input1 and input2 to be strings as well as Outcomes? Because we can’t have an infinite
recursion where it’s Outcomes all the way down: we need to be able to create “bottom-level” Outcomes where we
aren’t recording why an input is in the competition. For instance, in our running example, we aren’t bothering
to specify what Outcome led to North Carolina playing Butler in the sweet-sixteen round. And in general, the
participants in the first round of a tournament might not have had to play anyone in order to participate.

4.2 init

Our decision about attribute types has repercussions for the complexity of the specification of the init method,
in a4.py. Read that specification now.

You see that we must handle both the situation where input1 should be an Outcome and the situation where it
should be a string, and similarly for input2. And, suppose the winner comes from input1. Then, the name of the
winner must extracted differently from input1 depending on whether input1 is a string or an Outcome.

4.2.1 Initializing the winner non-explicitly and with an optional parameter

For the convenience of human callers, the init method is specified to set the winner attribute using an optional
parameter, one won, rather than directly taking a value to set winner to. To see why this is nice, look at the function
standard outcome() in file a4test.py, which will create the Outcome depicted in Figure 1 once Outcome. init ()

has been properly implemented:

• We can write Outcome("Gonzaga", "West Virginia") to create the Gonzaga-vs-West Virginia matchup in
Figure 1 and automatically have Gonzaga be the winner. If we’d been required to explicitly name the win-
ner, we’d have to have said Outcome("Gonzaga", "West Virginia", "Gonzaga") which is unattractively
redundant. Similarly, compare Outcome("Wisconsin", "Florida", False) with Outcome("Wisconsin",

"Florida", "Florida").

• Additionally, if we’d had to explicitly name the winner, we’d be vulnerable to typos: in fact, in typing the item
above, the first time around, one of us accidentally wrote Outcome("Wisconin", "Florida", "Florida").7

4.3 str : An example of a recursive method on Outcomes

We’ve mentioned before that Outcomes have a naturally recursive structure. You can see this principle in action in
the Outcome str method, which we’ve written for you.

Recall that if variable x is an object, then str(x) runs the str method of the (deepest, most sub-y) class that
x belongs to. This means we can write str(x) below and in our code instead of having to type in the underscores.

The core idea behind our implementation is:

1. Get this Outcome’s winner’s name — namely, self.winner — and move to a new line.

2. Recursive step: get the output of str(self.input1), and indent each of its lines one level.8

3. Recursive step: get the output of str(self.input2), and indent each of its lines one level.

5 TODO (aim for EOD Thursday the 13th): Finish9 init

5.1 The test init test procedure in a4test.py

In this assignment, you are required to develop (and submit) some test cases on your own — we hope you’ve learned
by now how useful test cases are, and thus, when you program “in real life”, we hope you always write test cases early
in the process.

In the case of testing the initializer, we’re simplifying this process by:

7Sorry, Badgers.
8The indentation stuff is a little tricky, and we do not expect you to have come up with this Python on your own.
9Throughout, by “finish” a method we mean: write test cases for it, then complete its body, and then test it

4

• Letting you use our pre-written str method to test init with. A test input consists of an Outcome
tc that you create, since the process of creating an object implicitly calls the initializer method. The correct
answer for tc is what you expect str(tc) to return, and you check whether what you get when you apply str

to tc is what you expected.

• Providing a reasonably-sized test case for you. Function standard outcome() in a4test.py returns the Outcome
in Figure 1, and function standard outcome str() returns the expected string. Thus, one test case is to
compare str(standard outcome()) against standard outcome str(). That is the purpose of the lines of
code we’ve given already you in test init(), in a4test.py.

What do you still have to do?

1. Read the comments at the top of a4test.py, which tell you the three sorts of Outcomes that need testing. Since
we’ve supplied a standard outcome, those comments tell you that you need to...

2. Add code to create a base-case Outcome, figure out what its string representation should be, and check whether
applying str() to that base-case Outcome gives you that right answer. And,

3. ... do the same for an “unbalanced” Outcome.

5.2 Implementation notes

You then need to complete the body of init so that it obeys the given specification.
As mentioned in Section 4.2, this specification looks complex in part because extracting a winner’s name requires

handling both Outcomes and strings. We abstract away this issue by giving you a helper function, extract name.
Because it is a function that is not a method, it is defined after all the Outcome methods in a4.py: look around line
125. Read its specification, and determine how to use it in your implementation of the initializer.

Note that we made extract name a non-method — it’s not indented inside the Outcome class definition —
because it doesn’t need to be associated with particular Outcome objects; indeed, it’s designed explicitly to be
applied to either Outcomes or strings.

The function name has a leading single underscore because we don’t anticipate it being used anywhere outside
the a4.py file; we’ve therefore designated it a hidden function.

6 TODO (aim for EOD Monday the 17th): Finish10 recursive methods
teams() and pathToVictory()

You’ll need to supply your own testcases in the test procedures test teams() and test path() in a4test.py. You can
use standard outcome() again; in fact, we’ve provided functions standard outcome teams and standard outcome path()

that return the expected results of standard outcome().teams() and standard outcome().pathToVictory(), re-
spectively.

You’ll need to check the types of self.input1 and self.input2. Take a look at extract name(), which we
wrote for you: it uses isinstance(x, Outcome) instead of type(x) == Outcome and you should too.11

The alphabetization requirement mentioned in the specification for teams() can be taken care of with the standard
sorting methods/functions for lists.

In pathToVictory(), you have to decide whether to perform recursion on self.input1 and record the name
of self.input2, or vice versa. Rather than have really long if-else blocks, we suggest that you first have an if-else
clause that correctly sets two variables, one corresponding to the recursion target and one corresponding to the loser’s
name. This allows you to write more generic code, referring directly to your new variables, after and outdented at
the same level as the main body of pathToVictory().

7 TODO (aim for afternoon Thursday the 20th): Finish12 recursive
method hasHeadToHead()

For testing, we’ve provided you some testing for the standard test Outcome in test procedure test hasHeadToHead().
You must decide whether to add test cases to the test cases dictionary for this standard Outcome.

10Throughout, by “finish” a method we mean: write test cases for it, then complete its body, and then test it
11Reason: what if someone has defined a subclass of Outcome, and is using that instead? Here is a Stack Overflow post on this topic.
12Throughout, by “finish” a method we mean: write test cases for it, then complete its body, and then test it

5

http://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python

You may lose points for not including missing important test cases for the standard Outcome.
You also need to add testing for a base-case Outcome and an unbalanced Outcome. You can use our code for the

standard Outcome as a model.

8 TODO (by the submission deadline): Edit your code

Recursive solutions at their best tend to be compact and elegant, and can be a pleasure to read. However, they
don’t tend to look their best on their first draft, even if they pass all test cases, just as most pieces of writing can be
improved by editing.

The above observation is not just idle philosophizing: the fewer lines a piece of code has, the fewer places
it can have bugs. Hence, once you get a recursive solution working, read it back over and try to find redundancies
you can eliminate.

• Do you have more special cases than you need? A bad sign is lots of if-elifs or nested if-statements.

• Are you creating variables that you don’t end up needing?

• Can you tell what your variables mean after being away from your computer for an hour? If not, you might
not be using a variable consistently — changing the meaning of your variables without (ahem) meaning to is
a major source of bugs. Or, it could be just a case of poor choice of variable names; but then why not make
them better?

Also, the above observation pertains not just to recursive code, but to all code. We make lots of drafts of code
before we distribute it to you; and we even update almost every piece of lab code each semester, even though the
labs are “the same”. Revision is key to all great writing — be it in English or in code.

9 Before You Submit

Remove all extraneous comments from a4.py and a4test.py, including comments we provided that do not document
what your code is doing, and comments you’ve been told to remove.

Remove all debugging print statements.
Put your (and your partner’s, if you have one) name and netid(s) at the top of the submitted file(s).
Acknowledge by name all help you received in comments at the top of your submitted file(s).

6

	Introduction
	Rules (All The Same As For A3)
	Representing Tournament Outcomes
	TODO (aim for end-of-the-day (EOD) Wednesday the 12th): Understand the basics of the Outcome class design
	Attributes
	__init__
	Initializing the winner non-explicitly and with an optional parameter

	__str__: An example of a recursive method on Outcomes

	TODO (aim for EOD Thursday the 13th): FinishThroughout, by ``finish'' a method we mean: write test cases for it, then complete its body, and then test it __init__
	The test_init test procedure in a4test.py
	Implementation notes

	TODO (aim for EOD Monday the 17th): FinishThroughout, by ``finish'' a method we mean: write test cases for it, then complete its body, and then test it recursive methods teams() and pathToVictory()
	TODO (aim for afternoon Thursday the 20th): FinishThroughout, by ``finish'' a method we mean: write test cases for it, then complete its body, and then test it recursive method hasHeadToHead()
	TODO (by the submission deadline): Edit your code
	Before You Submit

