
Updates to Assignment 3, Text Analysis

The assignment itself, with updates marked in orange, begins on the next page. On this “page 0”, we also
document the time, location, and nature of the updates, in reverse chronological order,

Sun Mar 26, 11:30pm: in a3.py, the commented line 225 in trigram generation should read “(2) do something
to get w3 added to your output”, not w2.

Thu Mar 23, 11:00pm:

1. Section 3.1, page 2: Explain explicitly how to create a new Sample.

2. Section 3.4, page 4: Clarification and addition of a hint on how to pick a starting bigram.

CS 1110 Spring 2017, Assignment 3: Text Analysis∗

Due on CMS Thursday March 30th, 2017, 11:59pm. As usual, we strongly recommend that you submit a
preliminary version by 2pm the day deadline, for the usual reasons.1

We’ve included suggested “milestone” deadlines throughout.

Necessary files: download and unzip http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment3/a3.zip

1 Introduction

You’ll be writing code that analyzes text samples, and can produce output like this from real speech transcripts,
such as U.S. State of the Union (SOTU) addresses:

****Analyzing differences between Obama SOTU 2013-2016 and Bush SOTU 2005-2008****

Only said by Obama (and at least 10 times): [’folks’, ’wage’, ’cant’, ’workforce’, ’manufacturing’,

’crisis’, ’everybody’, ’applause’, ’minimum’, ’planet’, ’race’, ’fact’, ’doesnt’]

Only said by Bush: (and at least 10 times): [’palestinian’, ’victory’, ’given’, ’struggle’, ’iraqi’,

’iraqis’, ’empower’, ’enemy’]

Ten most Obama-leaning joint words: [[’lets’, 3.921], [’thats’, 3.801], [’kids’, 2.929], [’class’,

2.838], [’republicans’, 2.502], [’place’, 2.502], [’worked’, 2.433], [’student’, 2.433], [’wont’,

2.359], [’dont’, 2.359]]

Ten most Bush-leaning joint words: [[’terror’, -2.947], [’personal’, -2.509], [’offensive’, -2.286],

[’liberty’, -3.251], [’institutions’, -2.404], [’honor’, -2.914], [’grateful’, -2.404], [’extremists’,

-2.845], [’elections’, -2.404], [’duty’, -2.691]]

For example, this means that Obama used the word “folks” (possibly capitalized) at least 10 times in the listed SOTU
addresses, whereas Bush never used that word at all in his listed SOTUs; whereas Bush used the word “palestinian”
at least 10 times in his listed SOTUs, but it never occurs in the Obama speeches we collected. The word “lets” (with
apostrophe removed) is used by both Obama and Bush’s SOTUs, but much more in Obama’s; the reverse is true of
the word “terror”.

It’s also possible to use text samples as a language model to generate new text. For example, suppose we were
to tire of writing new CS1110 exams. We might take the text from the 2014 spring exam and from it create a new
exam automatically2:

the average of a titem2 with gpa contribution 8 and id2 be the id of a list of titem2s threshold is a string
representing a nonempty list each item either an int or a float or int highlist and lowlist are possibly nonempty
lists for an example see text at the bottom of this page make sure you see this line and indent relative to it for
item in sourcelist illustrative example let id1 be the id of a titem2 as its number of credits times its gradeval
for example for the titem2 created by the length of the values in the diagrams below you are their grader please
mark up each student’s solution as follows 1 draw an x through anything that is present that should not be 2
circle anything that is missing you may wish to do this question by first drawing the relevant frames and objects
yourself 3 11 points implement redact and after so that they meet their specifications def redacts returns a copy
of string s where the all but the first occurrence of c examples after aloha a3 loh after aloha a3 loh after aloha
a4 loha after bananaphone n 6 anapho 4 13 points assume that inside a module named transcript2 is the sum of

∗Authors: Lillian Lee, Erik Andersen
1Reminders: you can replace older submissions with improved ones up to the actual deadline. Since you’ve been warned to submit

early, do not expect that we will accept work that doesn’t make it onto CMS on time — by CMS’s definition of time, which may differ
from your watch’s or your computer’s — for whatever reason, including server delays stemming from many other students trying to
submit at the same time.

2Albeit one that reads like the author was Lucky from Waiting for Godot.

1

http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment3/a3.zip

the room when asked to write python code on this exam you may wish to do this question by first drawing the
relevant frames and objects yourself 3 11 points implement redact and after so that they meet their specifications
def redacts returns a copy of s that starts after the first page of the room when asked to write python code on
this exam with students who are scheduled to take a later makeup academic integrity is expected of all students
of cornell university at all

Contents

1 Introduction 1

2 Rules (All The Same As For A2) 2

3 Your Goal: Complete a3.py So That a3checks.py Gives Correct Output 2
3.1 The class Sample in a3given.py . 2

3.1.1 TODO (aim for end of the day Friday): Complete make sample in a3.py 3
3.1.2 Debugging Hints . 3

3.2 TODO (aim for end of the day Friday or Monday): Complete merge in a3.py 3
3.3 TODO (aim for end of the day Monday): Complete diffs() . 4
3.4 TODO: Complete the Generation Functions . 4

3.4.1 If You Are Running Low On Time, De-Prioritize The Trigram Problem 4

4 Before You Submit 4

2 Rules (All The Same As For A2)

This assignment, and all subsequent ones unless otherwise noted, will receive a single grade; there is no revise-and-
resubmit like there was for Assignment 1.

You may do this assignment in groups of size one or two. All previous groups have been dissolved by CMS for
this assignment; if you want to work with someone (whether or not you’ve worked with them before), you need to
form your group on CMS before submitting.3

Reminder: If your partnership dissolves, see the course Academic Integrity description about “group divorce” on
what to do.

Our policies are laid out in full on the course Academic Integrity page, but we re-state here the main rules:
where “you” means you and, if there is one, your one CMS-registered group partner,

1. Never look at, access or possess any portion of another group’s work in any form.

2. Never show or share any portion of your work in any form to anyone except a member of the course staff.

3. Never request solutions from outside sources; for example, on online services like StackOverflow.

4. DO specifically acknowledge by name all help you received, whether or not it was “legal” according to (1)-(3).

3 Your Goal: Complete a3.py So That a3checks.py Gives Correct Output

We have provided the output of our a3checks.py incorporating our solutions in the file A3 sample.txt so that you can
check your output against ours.

3.1 The class Sample in a3given.py

We’ve provided class definitions and useful functions in a3given.py . Most important is the class Sample, which
encodes information in a given piece of text.

First, read the class specification carefully. (The specification for init means that to create a new Sample,
you use a constructor call with no arguments; for example, if you are in file a3.py and have an import statement
import a3given, then here is such a constructor call: a3given.Sample()4. This new Sample will have label, text,
unigram counts, bigram dict, trigram dict all set to the empty string/list/dictionary, and length set to 0.)

3Reminder: This requires actions on the part of both parties. Brief instructions for how to form a CMS group are on the course
Assignment page.

4 We mention this because we haven’t explained init methods in lecture yet.

2

http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php#scenario2
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#partnering
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#partnering

Here is an example. Suppose we had the following 30-word string — which is the contents of the file short.txt in
the directory sources in the zip file we’ve provided you, after being stripped of punctuation and lowercased, a.k.a.
downcased:

here is a small piece of text a small piece of text a small piece of text here is a small piece of text at nine
oclock in the morning

Then, what we expect if you created a Sample s with label "short" for this string is that the attributes of s

would be as follows:

• s.label: the string "short"

• s.text: the list [’here’, ’is’, ’a’, ’small’, ’piece’, ’of’, ’text’, ’a’, ’small’, ’piece’, ’of’,

’text’, ’a’, ’small’, ’piece’, ’of’, ’text’, ’here’, ’is’, ’a’, ’small’, ’piece’, ’of’, ’text’,

’at’, ’nine’, ’oclock’, ’in’, ’the’, ’morning’]

• s.unigram counts: the dictionary {’a’: 4, ’of’: 4, ’is’: 2, ’in’: 1, ’here’: 2, ’morning’:

1, ’oclock’: 1, ’nine’: 1, ’at’: 1, ’text’: 4, ’small’: 4, ’the’: 1, ’piece’: 4}

• s.bigram dict: the dictionary {’a’: [’small’, ’small’, ’small’, ’small’], ’of’: [’text’, ’text’,

’text’, ’text’], ’is’: [’a’, ’a’], ’in’: [’the’], ’here’: [’is’, ’is’], ’oclock’: [’in’],

’nine’: [’oclock’], ’at’: [’nine’], ’text’: [’a’, ’a’, ’here’, ’at’], ’small’: [’piece’,

’piece’, ’piece’, ’piece’], ’the’: [’morning’], ’piece’: [’of’, ’of’, ’of’, ’of’]}

• s.trigram dict: the dictionary {’text here’: [’is’], ’nine oclock’: [’in’], ’text at’: [’nine’],

’small piece’: [’of’, ’of’, ’of’, ’of’], ’piece of’: [’text’, ’text’, ’text’, ’text’], ’here

is’: [’a’, ’a’], ’text a’: [’small’, ’small’], ’oclock in’: [’the’], ’a small’: [’piece’,

’piece’, ’piece’, ’piece’], ’at nine’: [’oclock’], ’of text’: [’a’, ’a’, ’here’, ’at’], ’in

the’: [’morning’], ’is a’: [’small’, ’small’]}

3.1.1 TODO (aim for end of the day Friday): Complete make sample in a3.py

Complete the aforementioned function according to its specification and the implementation hints and requirements
given in the skeleton code.

Do note the comment in the body that this function is doing the job typically handled by an init method for
a class. Our unusual design decision stems from the fact that we haven’t yet covered writing methods in this course.

3.1.2 Debugging Hints

Debugging may be a bit challenging. To make this a bit easier for/on you, we’ve provided function sample from source file()

in a3given.py which calls your a3.make sample() and then uses our a3given.print summmary stats() to print out
the contents of the new Sample your code should have helped create.

So, run file a3checks.py, which tries to use your code to create a new Sample from the file short.txt, and then
attempts to print out some information about your Sample. Do you get the same output as in our A3 sample.txt?

You may also need to do some extra printing to debug. Take a look at our code for a3given.print summary stats();
you may learn some useful techniques.

You’ll also want to check whether you’ve made each attribute the right type.

3.2 TODO (aim for end of the day Friday or Monday): Complete merge in a3.py

This function is what allows us to combine several SOTU files, each by the same speaker, into one big sample for
that speaker.

Take a look at the “Combining Obama SOTU and then Bush SOTU” lines in a3checks.py to see a compact way
of doing so. And then, verify that you get the same output from your a3checks.py as that depicted in A3 sample.txt.

3

3.3 TODO (aim for end of the day Monday): Complete diffs()

Read the specification for this function in a3.py. Our implementation of this function was used to generate the
Obama-vs-Bush output in the Introduction.

For this assignment, we’ll use the log probability ratio to score a word w that occurs in both Samples under
consideration5. For simplicity, let’s say that c1 is the number of times that w occurs in the first sample s1, and c2
is the number of times that w occurs in the second sample s2. Finally, let n1 and n2 be the lengths of s1 and s2,
respectively. Then, the log probability ratio is as follows, where, importantly, all division operations must be
done using float arithmetic:

log

(
c1/n1

c2/n2

)
(1)

What does this function mean?

• If c1/n1 were the same as c2/n2 — so the word occurs with the same frequency in both samples — then the
ratio is 1, and the log of the ratio is therefore 0, which seems like a “neutral” number.

• If c1/n1 > c2/n2 — so the word has a higher rate of occurrence in s1 than in s2 — then the ratio is greater
than one, and the log of the ratio will then be positive.

• Finally, if c1/n1 < c2/n2, the score comes out negative.

So, the sign of the function tells us which sample the word “leans toward”.
To avoid dividing by zero or taking the log of zero, we don’t compute the score for any words such that either c1

or c2 is 0.
Implement the function according to its specification, obeying the hints and/or requirements given in the skeleton

code. Then, use A3 sample.txt to verify your work, as before.

3.4 TODO: Complete the Generation Functions

The two functions bigram generation and trigram generation stitch together randomly chosen bits of the sample
text to create a new text string in the “style” of the author(s) of the Sample.

The term bigram means a two-word sequence. The term trigram means a three-word sequence. The first function,
bigram generation, bases its decision of the next word to generate based just on the single previous word last gen-
erated; whereas the second function’s decision is based on the two words last generated.6 For trigram generation,
pick the starting bigram from the text, not the bigram dictionary. (Hint: while it may not be immediately obvious
how to pick a bigram from the text, note that it suffices to pick the index of the starting bigram in the text.)

Follow the instructions given in the skeleton code.
Once you get these functions working, you might amuse yourself by finding other document files to generate from.

Can you make your own new Shakespeare play?

3.4.1 If You Are Running Low On Time, De-Prioritize The Trigram Problem

The vast bulk of the credit for these two functions will be assigned to the bigram part of the challenge, so if pressed
for time, concentrate on getting the bigram function working.

4 Before You Submit

Once again, check the results of running a3checks.py against A3 sample.txt.
Put your (and your partner’s, if you have one) name and netid at the top of the submitted file(s). Also

acknowledge by name all help you received in comments at the top of your submitted file(s).

If you try running your code on some interesting data files, we’d be happy to hear about any intriguing findings
you make; feel free to email us professors to let us know!

5There are better scoring functions to use, but we’ll stick to this one for simplicity. One undesirable property it has it that low-frequency
words tend to come out as highly biased to one sample or the other.

6If you have heard of Markov models or probabilistic language models, these functions are non-standardly-implemented versions of
those models, in that the choice of next state is uniform over all the given choices.

4

	Introduction
	Rules (All The Same As For A2)
	Your Goal: Complete a3.py So That a3checks.py Gives Correct Output
	The class Sample in a3given.py
	TODO (aim for end of the day Friday): Complete make_sample in a3.py
	Debugging Hints

	TODO (aim for end of the day Friday or Monday): Complete merge in a3.py
	TODO (aim for end of the day Monday): Complete diffs()
	TODO: Complete the Generation Functions
	If You Are Running Low On Time, De-Prioritize The Trigram Problem

	Before You Submit

