
CS 1110 Spring 2017, Assignment 2: Frame and Object Notation∗

Due on CMS March 7th, 2017, 11:59pm. This assignment should take you only two or three hours.
We strongly recommend that you submit by 30-60 minutes before the deadline. Besides the usual reasons1, this

assignment involves work that you might do by hand and then need to scan in order to upload to CMS.

Contents

1 Rules 1
1.1 One-shot Submission From Now On . 1
1.2 How To Partner (You Only Get One) . 1
1.3 Reminder: What Collaborations Are (Dis-)Allowed And How To Document Them 1

2 Learning Objectives — Which Have Grading Implications 2

3 Notational Conventions (Some of These Differ From Previous Semesters) 3
3.1 Depicting the Creation of New Objects . 3
3.2 Worked Example . 3

4 The Code Whose Execution You Are To Diagram 3
4.1 Using Python Tutor . 3

5 Turning in the Assignment 4
5.1 How to Document Your Name(s) and NetID(s) . 4
5.2 How To Create An Uploadable Version . 4

5.2.1 PDF (Perhaps Of A Scan Of Handwritten Work) Highly Preferred . 4
5.2.2 Other File Formats . 4

1 Rules

1.1 One-shot Submission From Now On

This assignment, and all subsequent ones unless otherwise noted, will receive a single grade; there is no revise-and-
resubmit like there was for Assignment 1.

1.2 How To Partner (You Only Get One)

You may do this assignment in groups of size one or two. You need not have the same group as you had in A1.
If you are going to work together with someone, then form your group on CMS before submitting.2

Reminder: If your partnership dissolves, see the course Academic Integrity description about “group divorce” on
what to do.

1.3 Reminder: What Collaborations Are (Dis-)Allowed And How To Document Them

Our policies are laid out in full on the course Academic Integrity page, but we re-state here the main rules: where
“you” means you and, if there is one, your one CMS-registered group partner,

1. Never look at, access or possess any portion of another group’s work in any form.

∗Authors: Walker White, Lillian Lee, Steve Marschner, Stephen McDowell, Erik Andersen
1Reminders: you can replace older submissions with improved ones up to the actual deadline. Since you’ve been warned to submit

early, do not expect that we will accept work that doesn’t make it onto CMS on time — by CMS’s definition of time, which may differ
from your watch’s or your computer’s — for whatever reason, including server delays stemming from many other students trying to
submit at the same time. No so-called “slipdays” and this time we really mean it, no “you get to submit late at the price of a late
penalty” for this assignment.

2Reminder: This requires actions on the part of both parties. Brief instructions for how to form a CMS group are on the course
Assignment page.

1

http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php#scenario2
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#partnering
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#partnering

2. Never show or share any portion of your work in any form to anyone except a member of the course staff.

3. Never request solutions from outside sources; for example, on online services like StackOverflow.

4. DO specifically acknowledge by name all help you received, whether or not it was “legal” according to (1)-(3).

2 Learning Objectives — Which Have Grading Implications

The purpose of this assignment is to give you practice executing Python code on paper using the notation we have
introduced in class. You need to be able to do this quickly and confidently—uncertainty about what to draw is a
sign that you don’t really understand what the programs you write are going to do.

The importance of the notation we have introduced in class is that it gives us a precise visual language for
describing and understanding exactly what Python is doing when it executes code. In this assignment, you will
use this notation to demonstrate your understanding of what happens during the execution of a given sequence of
statements, and on exams you will likewise use this same language to prove your understanding. In complex coding
situations, we use these kinds of diagrams ourselves to figure out what’s going on.

Concepts tested:

1. What statements create variables or change the values of what variables (including global variables, local
variables, and object attributes).

2. That the result of a constructor expression is the ID of the new object that is created.

3. That frames summarize the state of the process of executing a function call. The variables they contain store
information local to the corresponding function, and indicate what that function can affect; the program counter
records what line number should be executed next.

• Parameters are local variables that serve the purpose of holding the input values that the function is
supplied when called.

• Arguments are the input values that are supplied to a function when the function is called, and are assigned
to the corresponding parameter variables.

4. Which statements of an if-statement are executed in a given setting.

Given these learning objectives, some seemingly minor but actually tragic mistakes you can expect to lose points for
committing are:

1. Drawing fewer or more objects than the number of constructor expressions that are evaluated during execution.

2. In the frame for a call to a function, not drawing a correspondingly named box for each parameter in that
function’s header.

3. Drawing non-existent variables (indicating that you believe in their existence).

Some seemingly minor notational mistakes that could indicate deeper misunderstandings and thus risk point deduc-
tions are:

1. Writing the name of a variable, say x, inside of the box for another variable, say a box named y, instead of a
value [the problem: if x’s value is subsequently changed, you would predict the wrong value for y].

2. Writing a variable name on the tab of an object instead of a value [the problem: if the variable’s value changes,
you would incorrectly predict that the object’s ID changes too].

3. Not having the correct sequence of crossed-out line numbers in the frame’s program counter. [the problem:
you might be misunderstanding where the flow of execution goes next].

2

3 Notational Conventions (Some of These Differ From Previous Semesters)

When you are using the frames-and-objects notation on paper:

1. Do not erase any values, objects, or frames. For values that are changed, the old value should be neatly crossed
out such that we can see what the old value was; and the new value should be written next to it. Similarly,
frames should be crossed out rather than erased, and objects should never be removed.

2. When function execution ends, cross out the final value of the program counter. The series of crossed-out
program counter values is a record of which lines were executed during the function call.

3. If a function call returns some value v, write “Return v ” in the frame, with a box around the value. For

example, “Return 3 ” for a function call that returned the integer value 3. (Be sure you are writing a value,
not a variable name.)

4. Place your frames so that their position reflects the order in which they were created; we recommend starting
at the top and drawing each frame below the previous one.

3.1 Depicting the Creation of New Objects

Since we haven’t covered class definitions in detail yet, assume that the creation of a new object and initialization of
its attributes happen in one step.3

3.2 Worked Example

You can see the Spring 2014 version of this course for a worked example. The example draws from a piece of code
called a2 example.py. Two diagrams of the execution of this code are provided, one by Prof. Lillian Lee and one
by Prof. Steve Marschner.

Do note that Spring 2014 had a different convention about where to indicate the return value than what we have
instructed you in Section 3 item (3) above.

We provide two solutions to give an idea about variations in notation we don’t care about, such as whether or
not you draw a box around the class name in the upper-right of an object.

4 The Code Whose Execution You Are To Diagram

On page 5 of this handout, and also in the file a2.py, is the code you are to work with. Your submission should
consist of a diagram, compliant with the notational conventions given in Section 3, showing what happens during
the execution of lines 51–57 when you run this code by typing “python a2.py”.

The class definition for Acct in lines 5–8 means that a constructor call like Acct(16.0) creates a new Acct object
with a balance attribute holding the value 16.0.

Employing our notation correctly is a way of proving that you know what a1, a2, a3, x1, and x2 store or refer
to, and that you know whether or not each function does what its specification claims it does. We’ll tell you that
our solution depicts 5 global variables, between 2 and 8 objects (inclusive), and between 5 and 8 crossed-out frames
(inclusive). Our solution also indicates to us that at least one of the function specifications is misleading.

4.1 Using Python Tutor

We highly recommend that you run a2.py on your computer, and add some print statements to show you what values
ended up where. You can catch most mistakes you might make by comparing your on-paper results to the results of
actual execution.

You are also highly encouraged to use Python Tutor to step through the code above line by line and thus get a
clearer picture of what Python does during execution. If you want to use Python Tutor, copy the contents of the file
a2.py into it. (Don’t copy from this document, because you don’t want to include the line numbers in Python Tutor.)
You may want to change Python Tutor’s “draw references using arrows” option to “use text labels for references”.

Be aware that some of Python Tutor’s notational and display conventions differ from what we use in this class
and are expecting on this assignment. Examples: it removes “lost” objects, which we don’t; we are not including

3That is, for now, don’t worry about the init method in a class or draw a frame for it.

3

http://www.cs.cornell.edu/courses/cs1110/2014sp/assignments/assignment2/a2_example.py
http://www.cs.cornell.edu/courses/cs1110/2014sp/assignments/assignment2/a2_example.py
http://www.cs.cornell.edu/courses/cs1110/2014sp/assignments/assignment2/a2_example-soln-ll.png
http://www.cs.cornell.edu/courses/cs1110/2014sp/assignments/assignment2/a2_example-soln-sm.png
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment2/a2.py
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment2/a2.py
http://www.pythontutor.com/visualize.html
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment2/a2.py

class folders or function objects (unless necessary—and it’s not necessary in this assignment); Python Tutor produces
a frame for init whereas we’re not asking you to do this for this assignment, as noted in Section 3.1.

And note that on exams, you will need to understand what objects, frames, and variables are created and altered
without having Python Tutor by your side. Just as an accomplished violinist can perform a concerto without the
score and a neurosurgeon can identify the hippocampus without referring to a diagram, a proficient programmer can
understand code by reading and diagramming it, without having to try it out to see what it does. The ability to
flawlessly predict the execution of programs without access to a computer will tell you (and us!) that you truly know
how Python programs work.

Moreover, as we may have mentioned with respect to iClicker questions in class, you often learn more from
making mistakes and being corrected than from being right the first time. We thus recommend that you try doing
this assignment a bit at a time by hand, each time checking your partial answers against what Python Tutor produces.

5 Turning in the Assignment

5.1 How to Document Your Name(s) and NetID(s)

When you finish the assignment, put the names and netids of all group members, listed alphabetically by
last name, last names underlined, first names not underlined, at the top of the page.4

We highly recommend that before submission, you double-check your answers against the “Learning Objectives
— Which Have Grading Implications” section above.

5.2 How To Create An Uploadable Version

5.2.1 PDF (Perhaps Of A Scan Of Handwritten Work) Highly Preferred

You can work on paper and then scan your paper as a PDF. There are scanners in Olin and Uris Library to help
you with this.

Your solution must be a single PDF file. If your scanner makes more than one file, combine them together. On
Windows, the program PDFtk can merge multiple PDF files into one file. In OS X, the built-in application Preview
can be used to merge PDF files.

Your final file must be less than 100MB in size; ideally it should be less than 10MB. This should not be a problem
as long as the resolution is reasonable. Do not scan at a higher resolution than 300 dpi; we do not need that level of
detail. If your file is too large, use the web page SmallPDF to reduce your file size.

5.2.2 Other File Formats

We will be printing out your submissions to grade. We worry that photos of your work taken from your phone might
not print out well enough for us to read, and if we can’t read your assignment, we can’t give you credit for it. That
being said, if you want to risk this, CMS will allow you to upload a PNG or JPG file.

4We will be printing out the submissions for grading. Without your names on the paper, we will not know that the assignment is
yours, and we cannot give you credit for your work; and if we can’t tell your first name(s) from your last name(s), we may misfile your
work or your grade.

4

https://olinuris.library.cornell.edu/services/print-scan-wifi/scanners-photocopiers
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://support.apple.com/en-us/HT202945
https://smallpdf.com/compress-pdf

1 # a2.py

2 # Lillian Lee (LJL2) and Erik Andersen (ELA63)

3 # Feb 27, 2017

4

5 class Acct(object):

6 """Accts have a balance attribute that is a float (can be negative or 0)"""

7 def __init__(self, amt):

8 self.balance = amt

9

10 def transfer(source, to, amt):

11 """Move float <amt> from balance of Acct <source> to balance of Acct <to>"""

12 source.balance = source.balance - amt

13 to.balance = to.balance + amt

14

15 def transfer_to_new(a):

16 """Returns new Acct with balance of Acct <a> moved to the new Acct's balance"""

17 new = Acct(0.0)

18 transfer(a,new,a.balance)

19 return new

20

21 def equalize(a1, a2):

22 """Change balance of both Acct a1 and Acct a2 to the average balance of the

23 two Accts."""

24 avg = (a1.balance + a2.balance)/2.0

25 a1.balance = avg

26 a2.balance = a1.balance

27

28 def smaller_into_bigger(a1,a2):

29 """(1) Empties the smaller Acct of a1 and a2 into the bigger one, unless

30 the smaller has a balance less than 10, in which case no change is

31 made.

32 (2) If a change is made, a1 becomes the bigger Acct and a2 becomes

33 the smaller Acct.

34 (2) Returns -1 if no change was made; otherwise, returns the amount that

35 was moved."""

36 if a1.balance < 10 or a2.balance < 10:

37 return -1

38 elif a1.balance < a2.balance:

39 smaller = a1

40 bigger = a2

41 else:

42 smaller = a2

43 bigger = a1

44

45 output = smaller.balance

46 transfer(smaller, bigger, output)

47 a1 = bigger

48 a2 = smaller

49 return output

50

51 a1 = Acct(10.0)

52 a2 = Acct(30.0)

53 a3 = transfer_to_new(a2)

54 equalize(a2,a1)

55 transfer(a3,a1,10.0)

56 x1 = smaller_into_bigger(a1, a2)

57 x2 = smaller_into_bigger(a1,a3)

5

6

	Rules
	One-shot Submission From Now On
	How To Partner (You Only Get One)
	Reminder: What Collaborations Are (Dis-)Allowed And How To Document Them

	Learning Objectives — Which Have Grading Implications
	Notational Conventions (Some of These Differ From Previous Semesters)
	Depicting the Creation of New Objects
	Worked Example

	The Code Whose Execution You Are To Diagram
	Using Python Tutor

	Turning in the Assignment
	How to Document Your Name(s) and NetID(s)
	How To Create An Uploadable Version
	PDF (Perhaps Of A Scan Of Handwritten Work) Highly Preferred
	Other File Formats

