
Updates to Assignment 1

The assignment itself, with corrections marked in orange, begins on the next page. On this “page 0”, we also
document the time, location, and nature of the updates, in reverse chronological order,

Feb 17, 9am: Page 9 Section 9: missing preconditions for exchange amount added.

Feb 15, 2:45pm: Page 9, Section 10: URL for instructions on how to break up long lines has been fixed.

CS 1110 Spring 2017, Assignment 1: Currency Conversion∗

http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/hw1.pdf

February 17, 2017

Figure 1: BTC stands for the cryptocurrency Bitcoin, but we sorta wish it stood for BaTCoin.

Thinking about that trip overseas? If you can swing it, it is best to go when the exchange rate is in your favor,
i.e., when your dollars buy more in the foreign currency. So, it would be nice to have a function that, given your
current amount of cash in US dollars, tells you how much your money is worth in another currency.

However, there is no set mathematical formula to compute this conversion. The value of one currency with
respect to another is constantly changing. In fact, in the time that it takes you to read this paragraph, the exchange
rate between the dollar and the Euro has probably changed several times. How can we possibly write a program to
handle something like that?

One solution is to make use of a web service. A web service is a program that, when you send it web requests,
automatically generates a web page with the information that you asked for. In our case, the web service will tell us
the exchange rate for most major international currencies. Your job will be to use string-manipulation methods to
read the generated web page and extract the exact information we need.

Primary learning objectives. You will exercise the following: use of string operations and methods on a real-
world problem; use of iterative development and testing for a larger-scale project than we have tackled before.

Navigating links in this pdf. Text in any shade of blue in this handout is a clickable link.

Contents

1 Rules 2
1.1 How To Partner (You Only Get One) . 2
1.2 What Collaborations Are (Dis-)Allowed And How To Document Them . 2
1.3 Python You Are NOT Allowed To Use In This Assignment . 2

2 Getting Credit: You Have Multiple Tries to Get All The Points 3
2.1 Start Early! You’ll All Be Working With the Same Machine! . 3
2.2 Initial File Submission Before The Initial Deadline . 3
2.3 Special For A1 Only: Revision In Response To Grader Feedback . 3

3 The Currency Exchange Web Service 3
3.1 Invalid Queries . 4

4 Files Needed 4
4.1 Your Lab 3 Files . 4
4.2 Files In a1.zip . 4

∗Authors: Walker White, Lillian Lee, Steve Marschner, Molly Feldman, Qin Jia, Stephen McDowell, Alex Parkhurst, Dana Warmsley,
Dongwook Yoon, Erik Andersen

1

http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/hw1.pdf

5 Your task 5
5.1 Iterative Development (How to Work Through the Assignment) . 5

6 Part A: Breaking Up Strings 5

7 Part B: Processing A JSON String 6
7.1 Warning: Test For Stray Spaces . 6
7.2 first in double quotes(s) . 6
7.3 get source(json) . 6
7.4 get target(json) . 6
7.5 has error(json) . 7

8 Part C: Currency Query 7
8.1 Testing: Some Example Values . 8
8.2 Better: Testing Against the Webserver . 8

9 Part D: Currency Exchange 8
9.1 Testing . 9

10 Code Format Requirements 9

11 Pre-Submission Checklist 9

1 Rules

1.1 How To Partner (You Only Get One)

You may do this assignment with at most one other person.
If you choose to work with a partner, before you submit any files, the two of you must link your A1 files/fates on

CMS by forming a CMS group. This requires that one person must issue a CMS invite and the other must accept
via CMS. Brief instructions for how to form a CMS group are on the course Assignment page.

If your partnership dissolves, see the course Academic Integrity description about “group divorce” on what to do.

1.2 What Collaborations Are (Dis-)Allowed And How To Document Them

Our policies are laid out in full on the course Academic Integrity page, but we re-state here the main rules: where
“you” means you and, if there is one, your one CMS-registered group partner,

1. Never look at, access or possess any portion of another group’s code in any form.

2. Never show or share any portion of your code in any form to anyone except a member of the course staff.

3. Never request solutions from outside sources; for example, on online services like StackOverflow.

4. DO specifically acknowledge by name all help you received, whether or not it was “legal” according to (1)-(3).

Rule (4) above boils down to “citing your sources”. See the aforementioned website for more detail, but basically,
the header comments of your code must accurately describe the entire set of people and sources1 that contributed to
the code that is submitted. An incomplete listing of contributors in your code headers constitutes fraud.

1.3 Python You Are NOT Allowed To Use In This Assignment

Everything that you need to complete this assignment should have been covered by the lecture on Objects.
In fact, even if you happen to know what they are, you may not use if-statements, conditional statements, loops,

or recursion anywhere in this assignment.2

1Other than the course staff or course materials.
2 In fact, they would constitute inelegant overkill for the assigned tasks.

2

http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#partnering
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php#scenario2
http://www.cs.cornell.edu/courses/cs1110/2017sp/about/integrity.php

2 Getting Credit: You Have Multiple Tries to Get All The Points

2.1 Start Early! You’ll All Be Working With the Same Machine!

This assignment involves everybody’s programs contacting a lone computer, cs1110.cs.cornell.edu. All 550 or
so CS1110 students doing this at the last minute will slow things down even more than the typical response time of
several seconds for connection and data retrieval.

2.2 Initial File Submission Before The Initial Deadline

Your initial solutions must be submitted to CMS by Thursday, February 23rd at 11:59pm.
But, we strongly recommend that you first submit whatever preliminary progress you have to CMS by 2pm on

Thursday, February 23rd.3 You can replace older submissions with improved ones up to the deadline.

2.3 Special For A1 Only: Revision In Response To Grader Feedback

We want everyone to master this assignment, and so allow (repeated) revisions in response to grader feedback —
our hope is that everyone eventually gets a 10/10. This iterative process, which can go around multiple times but
terminates by Thursday, March 2nd, consists of repetition of the following steps.

Grading step. (Us.) We evaluate your code according to the following criteria, in order:

• Adequate test cases

• Correctness of the code (does it pass our test cases?)

• Good program format (style), according to the course style guidelines page

If there’s a problem, we put grading feedback on CMS and increment your grade by just one point.4 We stop
checking once we find the first few errors (we don’t flag them all).

If instead you’ve mastered the assignment, we give you 10/10 and the process halts.

Revision and regrade request step. (You.) When you get email from CMS notifying you that your grade has
changed, get the grader’s feedback: click on the Assignment 1 link in CMS. On the resultant page, if necessary, click
on the red word “show” in the line “Grading Comments & Requests (show).” Contact your grader (netid displayed
by CMS) if you have questions about their feedback.

As soon as possible — in 24 hours would be great5 — do R*5: Read the feedback, Revise your program
accordingly, Resubmit. Finally, Request a Regrade using the CMS; instructions are on the assignments webpage.6

When we see your revision, we go back to the grading step.

3 The Currency Exchange Web Service

For this assignment, you will use a simulated currency exchange service that never changes values. This is important
for testing in Part C: Currency Query; if the answer is always changing, it is hard to test that you are getting the
right answers.

To use the service, you use your web browser with special URLs that start with the following prefix:

http://cs1110.cs.cornell.edu/2017sp/a1server.php?

This prefix should be followed by a currency query. A currency query has three pieces of information in the following
format (without spaces; we have included spaces here solely for readability):

3This will give you practice with CMS and provide you a chance to alert us during business hours if any problems arise. Since you’ve
been warned to submit early, do not expect that we will accept work that doesn’t make it onto CMS on time, for whatever reason,
including server delays stemming from many other students trying to submit at the same time. No so-called “slipdays” and no “you get
to submit late at the price of a late penalty” for this assignment, due to the tight grading timelines described in the next section.
Of course, if there are extenuating circumstances, contact the instructor(s) immediately to let us know the situation.

4Hence, do not be alarmed if you see a “1” for the assignment at first! We’re just tracking the number of revisions.
5You want to leave time for multiple cycles.
6If you do not request a regrade, we have no simple way of knowing that you have resubmitted, and your work will languish.

3

http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/style.php
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/index.php#regrades

source=currencyYouHave & target=currencyYouWantToConvertTo & amt=amount

where currencyYouHave is a three-letter code for the original currency, currencyYouWantToConvertTo is a three-
letter code for the new currency, and amount is a float value for the amount of money in the original. For example,
if you want to know the value of 2.5 dollars (USD) in Euros (EUR), the query is

source=USD&target=EUR&amt=2.5

The full URL for this query is thus

http://cs1110.cs.cornell.edu/2017sp/a1server.php?source=USD&target=EUR&amt=2.5

Click on the link to see it in action. You will note that the “web page” brought up in your browser is just a single
line in the following format:

{"success":true, "error":"", "source":"2.5 United States Dollars", "target":"2.3476275 Euros"}

This is what is known as a JSON representation of the answer. JSON is a way of encoding complex data so that
it can be sent over the Internet. You will use string operations and methods to pull the relevant data out of the
JSON string.

Try a few currency queries to familiarize yourself with the service.

3.1 Invalid Queries

If you enter a query that is syntactically well-formatted but invalid (for example, one with a non-existent currency
code like “AAA”), you get this error response:

{"success":false, "error":"Source currency code is invalid.", "source":"", "target":""}

If you enter a query with two valid currency codes but an invalid quantity value, you get this error response:

{"success":false, "error":"Currency amount is invalid.", "source":"", "target":""}

For all errorful queries, the “source” and “target” values are blank, while “success” is false. The “error” value is
a specific error message describing the problem.

4 Files Needed

Make a new folder. Have the command shell and Komodo Edit both open in this new folder before you start.

4.1 Your Lab 3 Files

You will be using two files that you worked with as part of Lab 3 for this assignment: lab03.py and cornelltest.py.
As a reminder, cornelltest contains function-level testing tools, which you will use to perform your own unit testing
throughout this assignment. A function in lab03.py (once you complete and test it) will be used in this assignment.

Place a copy of these files into your new folder.

4.2 Files In a1.zip

Download and unzip http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment1/a1.zip.
Move the files in it into your new folder. The two files are:

a1.py: a skeleton of the main module for this assignment. Note that it imports lab03.
a1test.py: a skeleton unit test for module a1. We’ve included the following test procedure stubs: testA, testB,

testC, testD, plus calls to these procedures at the end of the file.

4

http://cs1110.cs.cornell.edu/2017sp/a1server.php?source=USD&target=EUR&amt=2.5
http://json.org
http://www.cs.cornell.edu/courses/cs1110/2017sp/assignments/assignment1/a1.zip

5 Your task

Your primary goal in this assignment is to write a function that will use our webserver to return to its caller what
amount of a new currency they will receive in exchange for a given amount of a given currency. This function will
involve several steps. You will get the JSON string from the web service, break up the string to pull out the substring
containing the numeric value, and then convert that substring to a float.

This process might feel like you are working in reverse: you will write the functions to break up the string
first, and the functions to interact with the web service last. This is because we want you to develop the following
programming habit: always complete and test helper functions before finishing the functions that use them.

5.1 Iterative Development (How to Work Through the Assignment)

This assignment will follow an iterative development cycle. That means you will write test cases for a few functions,
then write their bodies, then fully test them before you write any more. This process makes it easier to find bugs;
you know that any bugs must have been part of the work you did since the last test.

The rest of the assignment is broken into four parts (listed as Parts A, B, C, and D). For each part, do the
following:

1. Write a representative set of test cases in a1test.py, by examing the function specification(s) for
that part in a1. Yes, this means you are writing tests before writing the function bodies. We talked about
this in lecture.
Unless otherwise instructed, each test case should be a call to an assert function in cornelltest. Furthermore,
your tests should be representative.

2. Write the function bodies for that part. Hint: If the specification says to return something, you need a
return statement. Make sure that the value returned is of the correct type.

3. Run the unit test a1test. If errors are found, fix them and re-test. Repeat until no more errors are found.

6 Part A: Breaking Up Strings

One subtask is to separate currency amounts from currency names. For example, given the string

"0.8963 Euros"

we want to be able to break it up into “0.8963” and “Euros”.
This is the motivation for the two functions below. The implementation of these functions should be relatively

simple; one or two lines suffices.

pre space(s)

Returns Substring of s; up to, but not including, the first space
Parameter s the string to break
Precondition s has at least one space in it

post space(string)

Returns Substring of string after the first space
Parameter string the string to break

Precondition string has at least one space in it

Implement these functions according to their specification, as described in “Iterative Development (How to Work
Through the Assignment)”. In other words,

1. Based on careful reading of the function specification, place a set of representative test cases in the procedure
testA() of a1test.py. To test the functions, make use of assert equals in the module cornelltest to
compare the result of each functions with the string that you expect to get back. When you think about what
test cases you want to include7, consider the following:

• Does the specification allow for strings with more than one space?

7We have four per function.

5

http://www.cs.cornell.edu/courses/cs1110/2017sp/lectures/02-14-17/presentation-06.pdf

• Does it allow for strings that start with a space?

• Does it allow for strings that don’t have any spaces?

2. Implement the two functions.

3. Test for and correct errors until no errors remain.

7 Part B: Processing A JSON String

All of the responses to a currency query, whether valid or invalid, contain the keywords “source” and “target”. If it
is a valid currency query, then the answer is in quotes after the keyword “target”. If it is invalid, then the quotes
after “target” are empty. Hence the next step is to extract the information in quotes after these keywords.

While working on each of the functions below, remember to write the test cases in at1test.py before implementing
the body. All test cases in this section go in the procedure testB(), which you should remember to specify. You
should thoroughly test each function before implementing the next one.

7.1 Warning: Test For Stray Spaces

We never said that JSON strings might not have extra spaces around the colons that separate values and their value
names.

So, test that your functions work on JSONs with spaces before and after the colons and without spaces before
and after the colons.

7.2 first in double quotes(s)

You have the specification of this function in file lab03.py, and need to have (or write) a completed and tested
version of this function.

Do not place this function in a1.py; it already has an import of lab03.py. Also, you do not need to submit test
cases for this function.

7.3 get source(json)

Returns: The source value in the response to a currency query.
Given a JSON response to a currency query, this returns the string inside double quotes (") immediately following

the keyword "source". For example, if the JSON is

'{"success": true,"error":"","source":"2 United States Dollars","target":"1.878102 Euros"}'

then this function returns '2 United States Dollars' (not '"2 United States Dollars"'). It returns the empty
string if the JSON is the result of on invalid query.

Parameter json: a JSON string to parse
Precondition: json is the response to a currency query

7.4 get target(json)

Returns: The target value in the response to a currency query.
Given a JSON response to a currency query, this returns the string inside double quotes (") immediately following

the keyword "target". For example, if the JSON is

'{"success":true,"error":"","source" :"2 United States Dollars","target": "1.878102 Euros"}'

then this function returns '1.878102 Euros' (not '"1.878102 Euros"'). It returns the empty string if the JSON
is the result of an invalid query.

Parameter json: a JSON string to parse
Precondition: json is the response to a currency query

6

7.5 has error(json)

Returns: True if the query has an error; False otherwise.
Given a JSON response to a currency query, this returns the opposite of the value following the keyword

"success". For example, if the JSON is
'{"success":false,"error":"Source currency code is invalid.", "source":"","target":""}'

then the query is not valid, so this function returns True (it does NOT return the message 'Source currency code

is invalid', nor the string "True").
Parameter json: a json string to parse

Precondition: json is the response to a currency query

As always, write your unit tests before implementing the two functions. Look carefully at the specifications. You
only need to test valid JSON queries. To get some JSON responses for testing, send queries to the webserver via a
query URL (as shown in the web service instructions) and copy the result into a test case.

Your approach should be simply to find the position of the appropriate keyword and extract the value in quotes
immediately after it.8

Your implementation must make use of the the helper function lab03.first in double quotes(), and the
string method find() or index().

8 Part C: Currency Query

Now it is time to interact with the web service. In this part, you will implement a single function. The test cases for
this function should go in procedure testC() in a1test.py.

def currency_response(source_currency, target_currency, source_amount):

"""Returns: A JSON string that is a response to a currency query.

A currency query converts source_amount money in currency

source_currency to the currency target_currency. The response

should be a string of the form

'{"success":true,"error":"","source" :"<old-amount>","target":"<new amount>"}'

where the values old-amount and new-amount contain the value

and name for the original and new currencies. If the query is

invalid, both old-amount and new-amount will be empty.

Preconditions:

source_currency is a string

target_currency is a string

source_amount is a positive float"""

While this function sounds complicated, it is not as bad as you think it is. You need to use the urlopen function
from the module urllib2. This function takes a string that represents a URL and returns an object that represents
the web page for that url. This object has the following methods:

Method Specification

geturl() Returns: The URL address of this web page as a string.
read() Returns: The contents of this web page as a string.

Using one or both of these methods (you might not need them both), plus string techniques to construct a query
URL string to give to urlopen, is enough to implement the function above.9

8Recall from Python You Are NOT Allowed To Use In This Assignment that conditional and if-statments are banned.
9Hints: (1) If x stores an object that has method sing(), then you can call the method by the expression x.sing(). (2) If you need

7

http://docs.python.org/2/library/stdtypes.html#str.find
http://docs.python.org/2/library/stdtypes.html#str.index
http://docs.python.org/2/library/urllib2#urllib2.urlopen

8.1 Testing: Some Example Values

There are a vast number of currencies supported by our currency exchange.10 Here is a sample:

Code Name 1 USD =
BTC Bitcoin 0.001028329131
EUR European Euro 0.939051
JPY Japanese Yen 113.2341
NAD Namibian Dollars 13.41125
NOK Norwegian Kroner 8.366577
PEN Peruvian Nuevo Soles 3.252093
SEK Swedish Kronor 8.902149

Note, however, that you should not use this table in any of the functions that you write in a1.py. The
table above is for constructing test cases, not for use in your actual functions.11

8.2 Better: Testing Against the Webserver

The best way to test this is to use a web browser to manually get the right (i.e., expected) JSON answer. For
example, one test case can be constructed by seeing the result of going to the URL

http://cs1110.cs.cornell.edu/2017sp/a1server.php?source=USD&target=EUR&amt=2.5

Copy the value from this web page into a test case in testC(). Then check that the function returns the same
JSON string. Remember to be thorough with your choice of test cases; one is not enough.

Important: Fetching a web page takes time, especially if too many people are trying to do so simultaneously.
You should give each call to this function at least 5-10 seconds to complete before restarting any tests.

9 Part D: Currency Exchange

We are now ready for the final part of the assignment. Implement the following, again using our test-case-before-
function-body approach. The test cases should go in procedure testD() in a1test.

def iscurrency(currency):

"""Returns: True if currency is a valid (3 letter code for a) currency.

It returns False otherwise.

Parameter currency: the currency code to verify

Precondition: currency is a string."""

In implementing iscurrency(), you must use the functions currency response and has error as helper
functions.

access to something in a module, you first have to make the module accessible. What Python command do you use for that?
10The list of currencies can be found here. But remember, to get the exchange rates themselves for this assignment, you should be

querying our CS1110 server.
11There is no reason for you to waste your time hard-coding in all of the currencies listed in this table into your program, since the

web service you will contact already knows them all anyway.

8

http://cs1110.cs.cornell.edu/2017sp/a1server.php?source=USD&target=EUR&amt=2.5
https://docs.openexchangerates.org/docs/supported-currencies

def exchange_amount(currency_from, currency_to, amount_from):

"""Returns: amount of currency received in the given exchange, as a float.

In this exchange, the user is changing amount_from money in

currency currency_from to the currency currency_to. The value

returned represents the amount in currency currency_to.

Preconditions:

currency_from is a string FOR A VALID CURRENCY CODE

currency_to is a string FOR A VALID CURRENCY CODE

amount_from is a positive float"""

UPPERCASE text added above to the preconditions.

9.1 Testing

In the case of iscurrency(), you will find “Testing: Some Example Values” useful in determining correct answers
for your test cases. While it is not okay to use the table in the body of iscurrency() itself, it is okay to use the
table to to decide on some test cases.

You may also use the table to craft some test cases for the function exchange amount. However, you might find
it easier to use a currency query URL to look up the correct answer, and then paste the answer into your test case.

A bigger issue with testing exchange amount is that real numbers cannot be represented exactly on your computer.
This creates problems when you try to test equality between floats. To solve this problem, cornelltest provides
a function called assert floats equal(). You should use this function to test exchange amount() instead of
assert equals().

10 Code Format Requirements

Once you have everything working you should go back and make sure that your code meets the class coding/style
conventions, including the following:

• Lines are short enough (˜80 characters) that horizontal scrolling is not necessary. See http://www.cs.cornell.
edu/courses/cs1110/2017sp/materials/style.php#line-length [URL fixed to include “materials”]. on
how to break long lines up.

• You have indented with spaces, not tabs (this is not an issue if using Komodo).

• Functions are separated from each other by two blank lines.

11 Pre-Submission Checklist

The files you will submit to CMS are lab03.py, a1.py, and a1test.py.12

Make sure the following are all true before you submit.

1. You’ve changed the header comments in all files to list the entire set of people and sources that contributed to
the code.

2. You (and your partner) have included your names and netids in the header of all files.

3. The date in the header comments has been changed to when the files were last edited.

4. You have set your CMS notifications settings to receive email regarding grade changes, and regarding group
invitations.

5. (reminder) If working with a partner, you have grouped on CMS. (One has invited on CMS, and one has
accepted on CMS.)

12Do not submit any files with the extension/suffix .pyc. It will help to set the preferences in your operating system so that extensions
always appear.

9

http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/style.php#line-length
http://www.cs.cornell.edu/courses/cs1110/2017sp/materials/style.php#line-length
http://www.cs.cornell.edu/Projects/CMS/userdoc/notifications.html

	Rules
	How To Partner (You Only Get One)
	What Collaborations Are (Dis-)Allowed And How To Document Them
	Python You Are NOT Allowed To Use In This Assignment

	Getting Credit: You Have Multiple Tries to Get All The Points
	Start Early! You'll All Be Working With the Same Machine!
	Initial File Submission Before The Initial Deadline
	Special For A1 Only: Revision In Response To Grader Feedback

	The Currency Exchange Web Service
	Invalid Queries

	Files Needed
	Your Lab 3 Files
	Files In a1.zip

	Your task
	Iterative Development (How to Work Through the Assignment)

	Part A: Breaking Up Strings
	Part B: Processing A JSON String
	Warning: Test For Stray Spaces
	first_in_double_quotes(s)
	get_source(json)
	get_target(json)
	has_error(json)

	Part C: Currency Query
	Testing: Some Example Values
	Better: Testing Against the Webserver

	Part D: Currency Exchange
	Testing

	Code Format Requirements
	Pre-Submission Checklist

