
1/26/2016

1

26. Computing the Rank
of a Webpage

Google PageRank

More Practice with 2D Array OPs

More Practice with numpy

Functions and 2D Arrays

Assume

 from random import uniform as randu

 from numpy import *

Let’s write a function randuM(m,n) that
returns an m-by-n array of random numbers,
each chosen from the uniform distribution on [0,1].

A Function that Returns an
n-by-n Array of Random Numbers

def randuM(m,n):

 A = zeros((m,n))

 for i in range(m):

 for j in range(n):

 A[i,j] = randu(0,1)

 return A

Probability Arrays

A nxn probability array has the property
that its entries are nonnegative and that
the sum of the entries in each column is 1

.7

.2

.3

.6

.1 .5

.3

.2

.1

Probability Arrays
To generate a random probability array, generate a
random matrix with nonnegative entries and then
divide the numbers in each column by the sum
of the numbers in that column

 5 6 1

 2 0 3

 4 3 1

 5/11 6/9 1/5

 2/11 0/9 3/5

 4/11 3/9 1/5

A Function that Returns a
Random Probability Array

def probM(n):

 A = randuM(n,n)

 for j in range(n):

 # Normalize column j

 s = 0;

 for i in range(n):

 s += A[i,j]

 for i in range(n):

 A[i,j] = A[i,j]/s

 return A

1/26/2016

2

Here is a Network

0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2
0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2

A node

A Transition

Probability

Think
of a
node
as an
island

Think
of a
node
as a
Web page

0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2

A node

A Transition

Probability

With
prob .1,
a person
on island 1
will hop
to island 2

A Random Process

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another
node in accordance with the “outbound”

probabilities.

0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2

At Node 0

100
200

700

0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2

At Node 1

100

600

300

1/26/2016

3

0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2

At Node 2

500

200

300

The Population Distribution

 Before After

Node 0 1000 1000

Node 1 1000 1300

Node 2 1000 700

Repeat

 Before After

Node 0 1000 1120

Node 1 1300 1300

Node 2 700 580

After 100 Iterations

 Before After

Node 0 1142.85 1142.85

Node 1 1357.14 1357.14

Node 2 500.00 500.00

Appears to reach a Steady State

After 100 Iterations
 Before After

Node 0 1142.85 1142.85

Node 1 1357.14 1357.14

Node 2 500.00 500.00

In terms of popularity: Island 1 > Island 0 > Island 2

After 100 Iterations
 Before After

Node 0 1142.85 1142.85

Node 1 1357.14 1357.14

Node 2 500.00 500.00

 [1142.85, 1357.14, 500.0] is the “stationary array”

1/26/2016

4

0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2

Computing the Stationary Array
Involves a Probability Array

.2 .6 .2

.7 .3 .3

.1 .1 .5

0

1

2

.1

.2

.3

.3

.1
.5

.7

.6

.2

Computing the Stationary Array
Involves a Probability Array

.2 .6 .2

.7 .3 .3

.1 .1 .5

The (0,1)
entry is the
Prob of
hopping
from island 1
to island 0

Transition Probability Array

.7

.2

.3

.6

.1 .5

.3

.2

.1

P:

P[i,j] is the probability of hopping from
node j to node i

Formula for Updating the
Distribution Array

w[0] = .2*v[0] + .6*v[1] + .2*v[2]

w[1] = .7*v[0] + .3*v[1] + .3*v[2]

w[2] = .1*v[0] + .1*v[1] + .5*v[2]

.7

.2

.3

.6

.1 .5

.3

.2

.1

V is the old distribution array,
w is the updated distribution array

P =

Formula for Updating the
Distribution Vector

w[0] = P[0,0]*v[0] + P[0,1]*v[1] + P[0,2]*v[2]

w[1] = P[1,0]*v[0] + P[1,1]*v[1] + P[1,2]*v[2]

w[2] = P[2,0]*v[0] + P[2,1]*v[1] + P[2,2]*v[2]

.7

.2

.3

.6

.1 .5

.3

.2

.1

V is the old distribution vector,
w is the updated distribution vector

P =

A Function that Computes the
Update

def Update(P,v):

 n = len(x)

 w = zeros((n,1))

 for i in range(n):

 for j in range(n):

 w[i] += P[i,j]*v[j]

 return w

1/26/2016

5

Back to PageRank

Background

Index all the pages on the Web from 0 to
N-1. (N is around 50 billion.)

The PageRank algorithm orders these
pages from “most important” to “least
important”.

It does this by analyzing links, not

content.

Key Ideas

The Transition Probability Array

A Very Special Random Walk

The Connectivity Array

A Random Walk on the Web

Repeat:

 You are on a webpage.

 There are m outlinks.

 Choose one at random.

 Click on the link.

0 1 0 0 1 0 1 0

1 0 0 0 0 0 1 1

0 1 0 0 1 0 0 0

1 0 1 1 0 1 0 0

0 0 0 1 0 0 1 0

0 1 1 0 0 1 0 0

1 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0

The Connectivity Array

G:

G[i,j] is
1 if there
is a link
on page j
to page i

0 a 0 0 b 0 c 0

a 0 0 0 0 0 c 1

0 a 0 0 b 0 0 0

a 0 a b 0 a 0 0

0 0 0 b 0 0 c 0

0 a a 0 0 a 0 0

a 0 0 0 0 0 c 0

0 0 a 0 0 a 0 0

The Probability Array

P:

a = 1/3

b = 1/2

c = 1/4

1/26/2016

6

PageRank From the Stationary
Array

 0.5723

0.8206

0.7876

0.2609

0.2064

0.8911

0.2429

0.4100

 3

 1

 2

 5

 7

 0

 6

 4

PageRank Stationary
 Array

Webpage 5
Has pageRank

0

