26. Computing the Rank of a Webpage

Google PageRank More Practice with 2D Array OPs More Practice with numpy

Functions and 2D Arrays

Assume

from random import uniform as randu
from numpy import *

Let's write a function randum(m,n) that returns an m-by-n array of random numbers, each chosen from the uniform distribution on [0,1].

Probability Arrays

A nxn probability array has the property that its entries are nonnegative and that the sum of the entries in each column is 1

Probability Arrays To generate a random probability array, generate a random matrix with nonnegative entries and then divide the numbers in each column by the sum of the numbers in that column 6/9 5 6 5/11 1/5 1 2 3 0 0/9 3/5 2/114 3 1 3/9 1/5 4/11

A Function that Returns a Random Probability Array

def probM(n): A = randuM(n,n) for j in range(n): # Normalize column j s = 0; for i in range(n): s += A[i,j] for i in range(n): A[i,j] = A[i,j]/s return A

The Population Distribution							
	Before	After					
Node 0	1000	1000					
Node 1	1000	1300					
Node 2	1000	700					

	Rep	eat
	Before	After
Node 0	1000	1120
Node 1	1300	1300
Node 2	700	580

After 100 Iterations								
	Before After							
Node	0	1142.85	1142.85					
Node	1	1357.14	1357.14					
Node	2	500.00	500.00					
	A	ppears to reach a St	eady State					

After 100 Iterations								
	Before	After						
Node 0	1142.85	1142.85						
Node 1	1357.14	1357.14						
N. 1. 0	500.00	500.00						
Node 2	500.00	500.00						
In terms of	popularity: Island	1 > Island 0 > Island 2						

P	fter 100 It	erations _{After}
Node 0	1142.85	1142.85
Node 1	1357.14	1357.14
Node 2	500.00	500.00
[1142.85,	1357.14, 500.0]	is the "stationary array"

Back to PageRank

Background

Index all the pages on the Web from 0 to N-1. (N is around 50 billion.)

The PageRank algorithm orders these pages from "most important" to "least important".

It does this by analyzing links, not content.

Key Ideas

The Transition Probability Array

A Very Special Random Walk

The Connectivity Array

A Random Walk on the Web

Repeat:

You are on a webpage. There are m outlinks. Choose one at random. Click on the link.

The	Conn	ec	:ti	vi	ty	A	r	ay	Y
G[i,j]is 1 if there is a link on page j to page i		0	1	0	0	1	0	1	0
	G:	1	0	0	0	0	0	1	1
		0	1	0	0	1	0	0	0
		1	0	1	1	0	1	0	0
		0	0	0	1	0	0	1	0
		0	1	1	0	0	1	0	0
		1	0	0	0	0	0	1	0
		0	0	1	0	0	1	0	0

The Probability Array										
		0	a	0	0	b	0	с	0	
2 - 1/3		a	0	0	0	0	0	с	1	
a – 1/5		0	a	0	0	b	0	0	0	
b = 1/2	_	a	0	a	b	0	a	0	0	
- ·	Р:	0	0	0	b	0	0	с	0	
c = 1/4		0	a	a	0	0	a	0	0	
		a	0	0	0	0	0	С	0	
		0	0	a	0	0	a	0	0	

