1/26/2016

26. Computing the Rank Functions and 2D Arrays
of a Webpage
Assume
Google PageRank from random import uniform as randu
More Practice with 2D Array OPs from numpy import *

More Practice with numpy Let'swrite a function randuM (m,n) that

returns an m-by-n array of random numbers,
each chosen from the uniform distribution on [0,1].

A Function that Returns an Probability Arrays
n-by-n Array of Random Numbers

A nxn probability array has the property
that its entries are nonnegative and that
the sum of the entries in each columnis 1

def randuM(m,n):
A = zeros((m,n))
for i in range (m):

for j in range (n): 21.6].2
A[i,j] = randu(0,1) -

return A 7133

11.1].5

- A Function that Returns a
Probability Arrays .
Y 4 Random Probability Array
To generate a random probability array, generate a
random matrix with nonnegative entries and then def probM(n) :
divide the numbers in each column by the sum A = randuM(n,n)
of the numbers in that column for j in range (n):
Normalize column j
5| 6] 1 5/11| 6/9| 1/5 s =0;
for i in range(n):
210 3 2/11| 0/9] 3/5 s += A[i,]]
for i in range (n):
4 3 1 4/11| 3/9| 1/5 A[i,j] = A[i,31/s
return A

1/26/2016

Here is a Network ATransition
Probability
Anode .

Think ™~ Think

of a of a

node node

as an as a

island Web page

ATransition
Probability A RandomProcess
1 wimn

prob .1,
.1 aperson
on island 1
will hop Suppose there are a 1000 people on each node.
to island 2

At the sound of awhistle they hop to another
node in accordance with the “outbound”
probabilities.

At Node O

1/26/2016

At Node 2

The Population Distribution

Before After
Node 0 1000 1000
Node 1 1000 1300
Node 2 1000 700

Repeat
Before After
Node 0 1000 1120
Node 1 1300 1300
Node 2 700 580

Before After
Node 0 1142.85 1142 .85
Node 1 1357.14 1357.14
Node 2 500.00 500.00

After 100 Iterations

Appears to reach a Steady State

After 100 Iterations

Before After
Node 0 1142.85 1142 .85
Node 1 1357.14 1357.14
Node 2 500.00 500.00

In terms of popularity: Island 1 > Island O > Island 2

After 100 Iterations

Before
Node 0 1142.85
Node 1 1357.14
Node 2 500.00

[1142.85, 1357.14, 500.0] is the “stationary array”

After

1142 .85

1357.14

500.00

1/26/2016

Computing the Stationary Array
Involves a Probability Array

Computing the Stationary Array
Involves a Probability Array

3
2 E‘ = The (0,1)
7.3 .3 entry is the
1.1 .5 .1 Prob of
hopping
Ny fromisland 1

tfo island O

P[i.j] is the probability of hopping from
node j to node i

Formula for Updating the
Distribution Array

2]1.6].2

p= (7].3[.3

A1.11.5
w[0] = .2*v[0] + .6*v[1l] + .2*v[2]
w[l] = .7*v[0] + .3*v[1l] + .3*v[2]
w[2] = .1*v[0] + .1*v[1] + .5%*v[2]

V is the old distribution array,
w is the updated distribution array

Formula for Updating the
Distribution Vector

2|.6(.2

p= [7]3].3

A1.11.5
w[0] = P[0,0]*v[0] + P[0,1]1*v[1] + P[0,2]*v[2]
w[1] = P[1,0]1*v[0] + P[1,11*v[1] + P[1,2]*v[2]
w[2] = P[2,0]*v[0] + P[2,1]1*v[1] + P[2,2]*v[2]

V is the old distribution vector,
w is the updated distribution vector

A Function that Computes the
Update

def Update (P,v):
n = len(x)
w = zeros((n,1))
for i in range(n):
for j in range (n):
wl[i] += P[i,]]1*v[]j]
return w

Back to PageRank

1/26/2016

Background

Index all the pages on the Web from O to
N-1. (N is around 50 billion.)

The PageRank algorithm orders these
pages from “most important” to “least
important”.

It does this by analyzing links, not
content.

Key Ideas

The Transition Probability Array
A Very Special Random Walk

The Connectivity Array

A Random Walk on the Web

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Clickon the link.

The Connectivity Array

Glijlis

1if there

is a link

onpage G:
to page i

a=1/3
b=1/2 p:
c=1/4

The Probability Array

1/26/2016

PageRank From the Stationary
Array

Webpage 5
Has pageRank
0

B OO JUUN P W

Stationary

P
Array ageRank

