27. Two-Dimensional Arrays

Topics

Motivation
The numpy Module Subscripting
functions and 2d Arrays

12	17	49	61
38	18	82	77
83	53	12	10

This is row 1.

Entries

12	17	49	61
38	18	82	77
83	53	12	10

This is the (1,2) entry.

Rows and Columns

Visualizing

12	17	49	61
38	18	82	77
83	53	12	10

Can have a 2darray of strings or objects.

But we will just
deal with 2d arrays of numbers.

A 2D array has rows and columns.
This one has 3 rows and 4 columns.
We say itis a "3-by-4" array (a.k.a matrix)

Rows and Columns

12	17	49	61
38	18	82	77
83	53	12	10

This is column 2.

Where Do They Come From?

Entry (i, j) is the distance from city i to city j

Where Do they Come From?

Entry (i, j) is 1 ifnode i is connected to node j and is O otherwise

Where Do They Come From

An m-by-n array of pixels.

Each pixel encodes 3 numbers: a red value, a green value, a blue value

So all the information can be encoded inthree 2D arrays

Accessing Entries

12	17	49	61
38	18	82	77
83	53	12	10

A[1] [2]
$\mathrm{A}=[[12,17,49,61],[38,18,82,77],[83,53,12,10]]$

Accessing Entries

12	17	49	61
38	18	82	77
83	53	12	10

A [2] [1]

Setting Up 2D Arrays

Here is a function that returns a reference to an m-by-n array of zeros:

```
def zeros(m,n):
    v = []
    for k in range(n):
        v.append(0.0)
    A = []
    for k in range (m):
        A. append (v)
    return A
```


Python is Awkward

Turns out that base Python is not very handy for 2D array manipulations.

The numpy module makes up for this.
We will learn just enough numpy so that we can do elementary plotting, image processing and other things.

Setting up a 2D Array of O's

```
>>> from numpy import *
>>> m = 3
>> n = 4
>>>A=
>>> A
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
```

Note how the row and column dimensions are passed to zeros

Accessing an Entry

```
>>> A= zeros((3,2))
>>> A[2,1] = 10
>>> A
array([[[ 0., 0.],
[ 0., 0.],
    [ 0., 10.]])
```

A nicer notation than $A[2][1]$.

Accessing an Entry

```
>>> A = array([[1,2,3],[4,5,6]])
>>> A
array([[1, 2, 3],
    [4, 5, 6]])
```

 Using the array constructor to build a
 3-by-2 array. Note all the square brackets.

Use Copy to Avoid Aliasing

```
>> A = array ([[1, 2],[3,4]])
>> B = A
>> A[1,1] = 10
>> B
array([[ 1, 2],
    [ 3, 10]])
>>A = array ([[1, 2],[3,4]])
>>> B = copy(A)
>>> A[1,1] = 10
>> B
array([[1, 2],
    [3, 4]])
```


Iteration and 2D Arrays

Lots of Nested Loops

Nested Loops and 2D Arrays

```
A = array ( (3,3))
```

for i in range (3):
for j in range (3):
$A[i, j]=(i+1) *(j+1)$

1	2	3
2	4	6
3	6	9

$$
\begin{aligned}
& \text { A } \\
& 3 \times 3 \\
& \text { times } \\
& \text { table }
\end{aligned}
$$

Understanding 2D Array Set-Up

Understanding 2D Array Set-Up

```
for i in range(3):
    A[i,0] = (i+1)*(0+1)
    A[i,1] = (i+1)*(1+1)
    A[i,2] = (i+1)*(2+1)
```


Row 0 is set up when i=0

Allocates memory, but doesn' \dagger put any values in the boxes. Much more efficient than the Repeated append framework.

Nested Loops and 2D Arrays

$$
A=\operatorname{array}((3,3))
$$

in the boxes. Much more efficient than the

```
for i in range(3):
    for j in range(3):
        A[i,j] = (i+1)*(j+1)
for \(i\) in range (3):
for \(j\) in range(3):
\(A[i, j]=(i+1) *(j+1)\)
```

```
for i in range(3):
    A[i,0] = (i+1)*(0+1)
    A[i,1] = (i+1)*(1+1)
    A[i,2] = (i+1)*(2+1)
for \(i\) in range (3):
\(A[i, 0]=(i+1) *(0+1)\)
\(A[i, 2]=(i+1) *(2+1)\)
```

Equivalent!

Understanding 2D Array Set-Up

```
for i in range(3):
    A[i,0] = (i+1)* (0+1)
    A[i,1] = (i+1)*(1+1)
    A[i,2] = (i+1)*(2+1)
```

1	2	3		
2	4	6		
				Row 1 is
:---				
set up when				
$\mathrm{i}=1$				

Understanding 2D Array Set-Up

```
for i in range(3):
    A[i,0] = (i+1)*(0+1)
    A[i,1] = (i+1)*(1+1)
    A[i,2] = (i+1)* (2+1)
```


Row 2 is set up when $i=2$

Cost and Inventory

The cost of making a product varies from factory to factory.

Inventory varies from factory to factory.

Ingredients

To set ourselves up for the solution to these problems we need to understand:
-The idea of a Cost Array (2D)

- The idea of an Inventory Array (2D)
- The idea of a Purchase Order Array (1D)

We will use numpy arrays throughout.

Extended Example

A company has m factories and each of which makes n products. We'll refer to such a company as an m-by-n company.

Customers submit purchase orders in which they indicate how many of each product they wish to purchase. A length-n list of numbers that expresses this called a PO list.

Three Problems

A customer submits a purchase order that is to be filled by a single factory.

Q1. How much would it cost each factory to fill the PO?

Q2. Which factories have enough inventory to fill the PO?

Q3. Among the factories that can fill the PO, whichone can do itmost cheaply?

Cost Array

The value of $c[k, j]$ is what it costs factory k to make product j.

Inventory Array

The value of $I[k, j]$ is the inventory in factory k of product j.

Inventory Array

The value of $I[k, j]$ is the inventory in factory k of product j.

Purchase Order

The customer wishes to purchase 29 product 3 units

The value of $\mathrm{PO}[j]$ is the number product j's that the customer wants

We Will Develop a Class called Company

We will package data and methods in a way that makes it easy to answer Q1, Q2, and Q3 and to perform related computations.

First, Some Handy Numpy

 Features
Computing Row and Column

 Dimension
Suppose:

$I=\operatorname{array}([[10,36,22],[12,35,20]])$

Computing Row and Column

 Dimension Using shapeSuppose:

Useful in functions and methods with 2D array arguments
m, n) is a "tuple"

$$
(m, n)=I . \text { shape }
$$

$$
m: \quad 2
$$

Finding the Location of the Smallest Value Using argmin

```
>>> from numpy import *
>>> x = array([20,40,10,70.60])
>>> iMin = x.argmin()
>>> xMin = x[iMin]
>>> print iMin, xMin
2 10
```

There is also an argmax method

Comparing Arrays

```
>>> x = array ([20, 10,30])
>> y = array ([2,1,3])
>>> z = array([10,40,15])
>>> x>y
array([ True, True, True], dtype=bool)
>>> all (x>y)
True
>>> x>z
array([ True, False, True], dtype=bool)
>>> any (x>z)
True
```


inf

A special float that behaves like infinity

```
>>> x = inf
>>> 1/x
0
>>> x+1
Inf
>>> inf > 9999999999999
True
```


Now Let's Develop the Class Company

Start with the attributes and the constructor.

The Class Company: Constructor

```
def __init__(self,Inven tory, Cost):
    self.I = Inventory
    self.C = Cost
    (m,n) = Inventory.shape
    TV = 0
    for k in range(m):
        for j in range (n):
            TV += Inventory [k,j] *Cost[k,j]
    self.TV = TV
```

The incoming arguments are the Inventory and Cost Arrays

Computing Total Value

```
TV = 0
for k in range(m):
    for j in range (n):
        TV += I[k,j]*C[k,j]
The nested loop takes us to each array entry
TV += I[k,j]*C[k,j]
```


Inventory Array

Cost Array

Row and Column Dimensions

def __init_(self, Inven tory, Cost) :
self. $\bar{I}=$ Inventory
self.C = Cost
$(\mathrm{m}, \mathrm{n})=$ Inventory. shape
$\mathrm{TV}=0$
for k in range(m):
for j in range (n):
TV += Inventory $[k, j]$ *Cost $[k, j]$
self.TV = TV

To compute the row and column dimension of a numpy 2D array, use the shape attribute.

Computing Total Value						
```TV = 0 for k in range(m): for j in range (n): TV += I[k,j]*C[k,j]```						
I -->	10	36	22	30	40	50
	12	35	20	60	70	80
Inventory Array				Cost Array		

## Computing Total Value

$\mathrm{TV}=0$
for $k$ in range ( $m$ ):
for $j$ in range ( $n$ ):
TV $+=I[k, j] * C[k, j]$


Inventory Array


Cost Array

## Computing Total Value

## TV = 0

for $k$ in range ( $m$ ):
for $j$ in range ( n ):
TV $+=I[k, j] * C[k, j]$


Inventory Array


Cost Array

Computing Total Value						
```TV = 0 for k in range(m): for j in range (n): TV += I[k,j]*C[k,j]```						
I -->	10	36	22	30	40	50
	12	35	20	60	70	80
Inventory Array				Cost Array		

Computing Total Value

$\mathrm{TV}=0$

for k in range (m):
for j in range (n):
TV += $I[k, j] * C[k, j]$

Inventory Array

Cost Array

Computing Total Value

$\mathrm{TV}=0$

for k in range (m):
for j in range (n):
TV += I[k,j]*C[k,j]

Inventory Array

Cost Array

Computing Total Value
TV $=0$ for k in range $(m):$ for j in range $(n):$ TV $+=I[k, j] * c[k, j]$

Inventory Array

Now Let's Develop Methods to Answer These 3 Questions

Q1. How much would it cost each factory to fill a purchase order?

Q2. Which factories have enough inventory to fill a purchase order?

Q3. Among the factories that can fill the purchase order, whichone can do it most cheaply?

Q1. How Much Does it Cost Each Factory to Process a Purchase order?

PO --->> | 1 | 0 | 12 | 29 | 5 |
| :--- | :--- | :--- | :--- | :--- |

For

$$
\mathbf{s}=0 ;
$$

factory 0:

$$
\begin{aligned}
& \text { for } j \text { in range (5): } \\
& \qquad=+=C[0, j] \text { * } P \text { [j] }
\end{aligned}
$$

For
factory 0 :

$$
s=0
$$

$$
\text { for } j \text { in range (5): }
$$

$$
s=+=C[0, j] \text { * } P O[j]
$$

For

$$
\begin{aligned}
& s=0 \\
& \text { for } j \text { in range (5): }
\end{aligned}
$$

factory 0 :
$s=+=C[0, j]$ * $P O[j]$

PO ---> | 1 | 0 | 12 | 29 | 5 |
| :--- | :--- | :--- | :--- | :--- |

For

$$
\begin{aligned}
& s=0 \\
& \text { for } j \text { in range (5) : }
\end{aligned}
$$

factory k :
$\mathbf{s}=+=C[k, j]$ * $P O[j]$

To Answer Q1 We Have

def Order (self, PO) :

""" Returns an m-by-1 array that
houses how much it costs
each factory to fill the PO.

PreC: self is a Company object representing m factories and n
products. PO is a length-n
purchase order list.
" $\%$ "

What the Order Method Does

Implementation...

def Order (self,PO):
C = self.C
$(\mathrm{m}, \mathrm{n})=$ C.shape
theCosts $=\operatorname{zeros}((m, 1))$
for k in range (m):
for j in range (n):
theCosts [k] $+=C[k, j] * P O[j]$
return theCosts

Using Order

Assume that the following are initialized:
I the Inventory array
C the Cost array
PO the purchase order array

```
>>> A = Company (I,C)
>>> x = A.Order(PO)
>>> kMin = x.argmin()
>>> xMin = x[kMin]
```

kMin is the index of the factory that can most cheaply process the PO and $x \mathrm{Min}$ is the cost

Q2. Which Factories Have Enough Inventory to Process a Purchase Order?

Who Can Fill the Purchase Order (PO)?

Factory 2 can' + because $12<29$

Who Can Fill the Purchase Order (PO)?

We need to compare the rows of I with PO.

Who Can Fill the Purchase Order (PO)?

 all(I[0,:] >= PO) is True

Who Can Fill the Purchase Order (PO)?

all(I[1,:] >= PO) is False

Who Can Fill the Purchase Order (PO)?

Yes

Yes
all(I[2,:] >= PO) is True

To Answer Q2 We Have...

def CanDo(self,PO):

""" Return the indices of those
factories with sufficient inventory.

PreC: PO is a purchase order array. """

Who Can Fill the PO?

```
def CanDo(self,PO):
    I = self.I
    (m,n) = I.shape
    Who = []
    for k in range(m):
        if all( I[k,:] >= PO):
            Who.append (k)
    return array (Who)
        Grab the
        inventory array
            and compute
            its row and col
            dimension.
```


Who Can Fill the PO?

```
def CanDo(self,PO):
```

 \(I=s e l f . I\)
 \((m, n)=I\). shape
 Initial ize Who to
 the empty list.
 Who \(=\) []
 Then build it up
 for \(k\) in range (m):
 thru repeated
 appending
if all($I[k,:]>=P O):$
Who. append (k)
return array (Who)

Who Can Fill the PO?

```
def CanDo(self,PO):
    I = self.I
    (m,n) = I.shape
    Who = []
    for k in range(m):
        if all( I[k,:] >= PO): :
            Who.append (k)
    return array (Who)
```


Who Can Fill the PO?

```
def CanDo(self,PO):
```

 \(I=s e l f . I\)
 \((\mathrm{m}, \mathrm{n})=\mathrm{I}\). shape
 Who \(=\) []
 for \(k\) in range (m):
 if all(\(\mathrm{I}[\mathrm{k},:]>=\mathrm{PO}\)):
 Who. append (k)
 return array (Who)

Using CanDo

Assume that the following are initialized:
I the Inventory array
C the Cost array
PO the purchase order array
>> A = Company (I, C)
>> kVals = A.CanDo (PO)
kVals is an array that contains the indices of those factories with enough inventory

Using CanDo

Assume that the following are initialized:
I the Inventory array
C the Cost array
PO the purchase order array
>> A = Company (I, C)
>>> kVals = A.CanDo(PO)

If k in kVals is True, then
all (A.I[k,:]>= PO)
is True

Q3: Among the

 Factories with enough Inventory, who can fill the PO Most Cheaply??

For Q3 We Have

def theCheapest (self,PO):
""" Return the tuple (kMin, costMin)
where kMin is the index of the factory that can fill the PO most cheaply and costMin is the associated cost. If no such factory exists, return None.

PreC: PO is a purchase order list. """
theCosts $=$ Order (PO)
Who = CanDo (PO)
if len (Who) $=0$:
return None
else:

Implementation

def theCheapest(self,PO):
theCosts $=$ Order (PO)
Who = CanDo (PO)
if len (Who) $==0$:
return None
else:
\# Find kMin and costMin

Implementation Cont'd

```
# Find kMin and costMin
costMin = inf
for k in Who:
    if theCosts[k]<costMin:
        kMin = k
        costMin = theCosts[k]
return (kMin,costMin)
```


Using Cheapest

Assume that the following are initialized:
I the Inventory array
C the Cost array
PO the purchase order array
>>> A = Company (I, C)
>>> (kMin, costMin) = A.Cheapest(PO)

The factory with index k Mincan deliver PO most cheaply and the cost is costMin

Updating the Inventory

After Processing a PO

Method for Updating the Inventory Array After Processing a PO

def UpDate (self,k, PO) :
$\mathrm{n}=\operatorname{len}(\mathrm{PO})$
for j in range (n):
\# Reduce the inventory of product j self. I[k,j] = self.I[k,j] - PO[j] \# Decrease the total value self. TV = self. TV - self. C[k,j]*PO[j]

Maintaining the class invariant, i.e., the connection between the I, C, and TV attributes.

