
25. Inheritance and Related
OOP* Ideas

Topics:
 The classes Card, Deck and Hand
 Subclasses
 Inheritance
 Method Overriding

*OOP = Object Oriented Programming

Will Cover These Topics
With a Single Example

It will involve operations with playing cards.

Closely follows Chapter 18 in Think Python

We Are Going to Define
Three Classes

class Card:

 “““ Represents a single playing card.”””

class Deck:

 “““ Represents a deck of cards”””

class Hand:

 “““ Represents a hand of cards”””

Decks and Hands

Things to do with a deck of cards:

 1. Shuffle 2. Sort*

 3. Add a card 4. Remove a card

Things to do with a hand of cards:

 1. Compare 2. Sort*

 3. Add a card 4. Remove a card

 *Maybe sort in different ways

Representing a Card

A card has a suit and a rank.

There are 4 possible suits.

There are 13 possible ranks.

Anticipate a class with two attributes

Representing a Card

['Clubs','Diamonds','Hearts','Spades']

['Ace','Two','Three', 'Four','Five','Six',

 'Seven','Eight','Nine’,'Ten',

 'Jack', 'Queen','King']

A card has a suit and a rank.
There are 4 possible suits.
There are 13 possible ranks

The Class Card

class Card:

 suit_names =

 rank_names =

 def __init__(self,suit,rank):

 def __str__(self):

 def __cmp__(self,other):

The Class Card

class Card:

 suit_names =

 rank_names =

 def __init__(self,suit,rank):

 def __str__(self):

 def __cmp__(self,other):

Class Variable

Class Variable

Constructor

For pretty printing

For comparing one
card to another

Class Variables

suit_names = ['Clubs', 'Diamonds',

 'Hearts','Spades’]

rank_names = [None, 'Ace', 'Two', 'Three',

 'Four', 'Five','Six', 'Seven',

 'Eight','Nine’,'Ten', 'Jack',

 'Queen','King']

Class Variables

suit_names = ['Clubs', 'Diamonds',

 'Hearts','Spades’]

rank_names = [None, 'Ace', 'Two', 'Three',

 'Four', 'Five','Six', 'Seven',

 'Eight','Nine’,'Ten', 'Jack',

 'Queen','King']

Putting None in the 0th entry makes for more intuitive
subscripting: rank_names[7] is ‘Seven’

Suits are “Indexed”

suit_names = ['Clubs', 'Diamonds',

 'Hearts','Spades’]

0 Clubs
1 Diamonds
2 Hearts
3 Spades

An ordering: Clubs < Diamonds < Hearts < Spades

Class Variables

suit_names = ['Clubs', 'Diamonds',

 'Hearts','Spades’]

rank_names = [None, 'Ace', 'Two', 'Three',

 'Four', 'Five','Six', 'Seven',

 'Eight','Nine’,'Ten', 'Jack',

 'Queen','King']

The Class Card

class Card(object):

 suit_names =

 rank_names =

 def __init__(self,suit,rank):

 def __str__(self):

 def __cmp__(self,other):

Constructor

Let’s look at the constructor…

The Constructor: Basic Idea

def __init__(self,suit,rank):

 """ suit and rank are ints """

 self.suit = suit

 self.rank = rank

c = Card(2,8)

Says:
 Create a card object that represents
 the eight-of-hearts

The Constructor With
a Convenient no-Argument Option
We’d like
 c = Card()
to generate a random Card.

def __init__(self,suit=None,rank=None):

 if suit==None and rank==None:

 self.suit = randi(0,3) # random suit

 self.rank = randi(1,13) # random rank

 else:

 self.suit = suit

 self.rank = rank

Using the Optional Argument Idea

The Class Card

class Card(object):

 suit_names =

 rank_names =

 def __init__(self,suit,rank):

 def __str__(self):

 def __cmp__(self,other):

For pretty printing

Let’s look at the __str__ method…

def __str__(self)

A special method that “pretty prints” a card

when we use print

>>> c = Card(2,13)

>>> print c

 King of Hearts

def __str__(self)

suit_names = ['Clubs', 'Diamonds',

 'Hearts','Spades’]

def __str__(self):

 i = self.suit # suit index

 theSuit = self.suit_names[i]

 j = self.rank # rank index

 theRank = self.rank_names[j]

 return theRank + ‘ ‘ + theSuit

Shows how to access class variables

The Class Card
class Card(object):

 suit_names =

 rank_names =

 def __init__(self,suit,rank):

 def __str__(self):

 def __cmp__(self,other):

For comparing one
card to another

Let’s look at the __cmp__ method…

Comparing Cards

What we’d like to do:

>>> C1 = Card(2,13) # King of Hearts

>>> C2 = Card(0,5) # Five of Clubs

>>> C1 > C2

True

The __cmp__ method makes this possible

Comparing Cards

What we’d like to do if L is a list of references

to Card objects:

The __cmp__ method makes this possible

L.sort()

for c in L:

 print c

Sorting requires comparisons
between the things that are
being sorted

How Do We Compare 2 Cards?

First compare their suits:

 Spades > Hearts > Diamonds > Clubs

If there is a tie, then compare their ranks:

 K > Q > J > 10 > … > 2 > Ace

How It Works
def __cmp__(self,other):

 if self.suit > other.suit:

 return 1

 if self.suit < other.suit:

 return -1

 if self.rank > other.rank:

 return 1

 if self.rank < other.rank:

 return -1

 return 0

Returning +1 means that the Card self is greater than
the Card other.

How It Works

def __cmp__(self,other):

 if self.suit > other.suit:

 return 1

 if self.suit < other.suit:

 return -1

 if self.rank > other.rank:

 return 1

 if self.rank < other.rank:

 return -1

 return 0

Returning -1 means that the Card self is less than
the Card other.

How It Works
def __cmp__(self,other):

 if self.suit > other.suit:

 return 1

 if self.suit < other.suit:

 return -1

 if self.rank > other.rank:

 return 1

 if self.rank < other.rank:

 return -1

 return 0

Returning 0 means that the Card self is the same as
the Card other.

Example
for k in range(7):

 YourCard = Card()

 MyCard = Card()

 if YourCard > MyCard:

 Winner = 'You'

 elif MyCard > YourCard:

 Winner = 'Me'

 else:

 Winner = 'Tie‘

 print YourCard, MyCard, Winner

Two random cards

Yours is “higher”

Mine is “higher”

If we get here, the two
cards are the same.

 Your Card My Card Winner

--

 Six of Hearts Six of Spades Me

 Eight of Spades Queen of Hearts You

 Five of Diamonds Queen of Clubs You

 Queen of Clubs Eight of Diamonds Me

 Two of Clubs Five of Spades Me

 Six of Clubs Four of Spades Me

 Nine of Clubs Seven of Spades Me

Sample Output

This Completes the Discussion
of the Class Card

class Card(object):

 suit_names =

 rank_names =

 def __init__(self,suit,rank):

 def __str__(self):

 def __cmp__(self,other):

Next Up : The Class Deck

class Deck(object):

 def __init__(self,suit,rank):

 def __str__(self):

 def pop_card(self):

 def add_card(self,card):

 def shuffle(self):

 def sort(self):

Constructor

Pretty Print

Sort the Deck

Shuffle the Deck

Add a card to the deck

Remove a card from the deck

The Attributes
DeckOfCards: list of Card objects

 n: int

n is the number of cards in the

deck.

The "top" of the deck is

 self.DeckOfCards[0]

The "bottom" of the deck is

 self.DeckOfCards[self.n]

The Constructor

def __init__(self):

 self.n = 52

 self.DeckOfCards = []

 for suit in range(4):

 for rank in range(1,14):

 card = Card(suit,rank)

 self.DeckOfCards.append(card)

It will build a length-52 list of cards:

The Constructor

def __init__(self):

 self.n = 52

 self.DeckOfCards = []

 for suit in range(4):

 for rank in range(1,14):

 card = Card(suit,rank)

 self.DeckOfCards.append(card)

Nested loops are used to cover all possible
suits and ranks.

The Constructor

def __init__(self):

 self.n = 52

 self.DeckOfCards = []

 for suit in range(4):

 for rank in range(1,14):

 card = Card(suit,rank)

 self.DeckOfCards.append(card)

The list is built via repeated appending

The Constructor

def __init__(self):

 self.n = 52

 self.DeckOfCards = []

 for suit in range(4):

 for rank in range(1,14):

 card = Card(suit,rank)

 self.DeckOfCards.append(card)

Reminder: one constructor can call another constructor.

Create and Print a Deck

D = Deck()

print D

 Ace of Clubs

 Two of Clubs

 Three of Clubs

 Four of Clubs

 Five of Clubs

 Six of Clubs

 Seven of Clubs

 Eight of Clubs

 Nine of Clubs

 Ten of Clubs

 Jack of Clubs

 Queen of Clubs

 King of Clubs

 Ace of Diamonds

 Two of Diamonds

 etc

The __str__ method
is invoked and produces
52 lines of output ---------------->

def shuffleDeck(self):

 shuffle(self.DeckOfCards)

Randomly Shuffle a Card Deck

Makes use of the list method shuffle.

The list function shuffle

This function can be applied to any list. A random permutation.
 NOT THE PERFECT SHUFFLE

>>> a = [1,2,3,4,5,6,7,8,9,10]

>>> shuffle(a)

>>> a

[10, 1, 3, 9, 2, 5, 7, 4, 8, 6]

>>> shuffle(a)

>>> a

[4, 9, 1, 3, 7, 10, 5, 6, 8, 2]

Create, Shuffle, and Print a Deck

D = Deck()

D.shuffle()

print D

 Jack of Spades

 Four of Hearts

 Seven of Diamonds

 Three of Spades

 Eight of Diamonds

 Seven of Clubs

 Ace of Hearts

 Six of Spades

 Ace of Diamonds

 Five of Diamonds

 Eight of Clubs

 Eight of Hearts

 Queen of Diamonds

 Six of Diamonds

 Six of Hearts

 etc

Remove a Card

def pop_card(self,Where):

 return self.cards.pop()

>>> x = [10,20,30,40]

>>> x.pop(2)

30

>>> x

[10, 20, 40]

Recall how to pop an entry in a list:

Remove a Card

def pop_card(self,Where):

 if Where=='Top':

 c = self.DeckOfCards.pop(0)

 elif Where=='Bot':

 c = self.DeckOfCards.pop()

 elif Where==None:

 k = randi(0,self.n-1)

 c = self.DeckOfCards.pop(k)

 self.n -= 1

 return c

Three alternatives. The selected card can come off the top or
bottom of the deck or it can be selected randomly.

Add a Card to a Deck

def add_card(self,card):

 self.DeckOfCards.append(card)

self.DeckOfCcards is a list of cards

Sort a Deck

def sort(self):

 self.DeckOfCards.sort()

This is possible because we defined a

 __cmp__

method in the Card class.

An Example

D = Deck()

D.shuffle()

for k in range(5):

 c = D.pop_card('Top')

 print c

 D.add_card(c)

Create and shuffle a deck. Then repeatedly select a
card off the top of the Deck, display it, and put it
back in the deck at the bottom.

This Completes the Discussion
of the Deck Class

class Deck(object):

 def __init__(self,suit,rank):

 def __str__(self):

 def pop_card(self):

 def add_card(self,card):

 def shuffle(self):

 def sort(self):

Next Up: The Hand Class

class Hand(Deck):

 def __init__(self,suit,rank):

 def __str__(self):

 def sort(self):

The Hand Class

class Hand(Deck):

 def __init__(self,suit,rank):

 def __str__(self):

 def sort(self):

The Hand Class inherits all the methods from the Deck class.

What Does this Mean?

Usually we would write Hand(object)

The Hand Class

class Hand(Deck):

 def __init__(self,suit,rank):

 def __str__(self):

 def sort(self):

Hand Class methods override the methods from the

Deck class that have the same name. The Deck class

also has methods called __str__ and sort.
What does “overriding” mean?

For pretty printing

Constructor

For sorting the
cards in a hand

Create a Deck. Shuffle It.
Extract 10 Cards. Make a Hand.

Print it.

D = Deck()

D.shuffle()

H = Hand(‘CVL’)

for k in range(10):

 c = D.pop_card()

 H.add_card(c)

print H

CVL:

 Ace of Hearts

 Three of Clubs

 Four of Spades

 Four of Diamonds

 Five of Hearts

 Six of Hearts

 Seven of Spades

 Eight of Spades

 Queen of Clubs

 Queen of Spades

Create a Deck. Shuffle It.
Extract 10 Cards. Make a Hand.

Print it.

D = Deck()

D.shuffle()

H = Hand(‘CVL’)

for k in range(10):

 c = D.pop_card()

 H.add_card(c)

print H

CVL:

 Queen of Clubs

 Three of Clubs

 Eight of Spades

 Six of Hearts

 Queen of Spades

 Ace of Hearts

 Five of Hearts

 Four of Spades

 Seven of Spades

 Four of Diamonds
The add_card method is inherited
from the Deck class

Create a Deck. Shuffle It.
Extract 10 Cards. Make a Hand.

Print it.

D = Deck()

D.shuffle()

H = Hand(‘CVL’)

for k in range(10):

 C = D.pop_card()

 H.add_card(C)

print H

CVL:

 Queen of Clubs

 Three of Clubs

 Eight of Spades

 Six of Hearts

 Queen of Spades

 Ace of Hearts

 Five of Hearts

 Four of Spades

 Seven of Spades

 Four of Diamonds
The print function from the Hand
class overrides the print function
from the Deck Class

Inheritance Chit Chat

The existing class Deck is the parent

The new class Hand is the child

Hand is a subclass of Deck

Inheritance is a very important mechanism when
it comes to maintaining and updating software.

Decks and Hands

Things to do with a deck of cards:

 1. Shuffle 2. Sort*

 3. Add a card 4. Remove a card

Things to do with a hand of cards:

 1. Compare 2. Sort*

 3. Add a card 4. Remove a card

 *Maybe sort in different ways

Another Example of Overriding

As written, when a Deck is sorted, it is sorted
by suit first and then by rank.

To be different, when a Hand is sorted, let’s
sort by rank first and then by suit.

 Seven of Clubs
 Ten of Diamonds

 Six of Hearts

Eight of Hearts

 Ace of Spades

 Ace of Spades

 Six of Hearts

Seven of Clubs

Eight of Hearts

 Ten of Diamonds

vs

The sort Method in the
Hand Class

def sort(self):

 self.cards.sort(MyCompare)

def MyCompare(H1,H2):

 if H1.rank > H2.rank:

 return 1

 if H1.rank < H2.rank:

 return -1

 if H1.suit > H2.suit:

 return 1

 if H1.suit < H2.suit:

 return -1

 return 0

Sorts by
rank first,
then suit.

This sort
Method
overrides
the sort method
in Deck, which
sorts by
suit first,
then rank.

 Three of Hearts

 Four of Spades

 Seven of Diamonds

 Five of Spades

 Queen of Diamonds

 Four of Hearts

 Ten of Diamonds

 Queen of Hearts

 Two of Spades

 Ace of Clubs

 Ace of Clubs

 Seven of Diamonds

 Ten of Diamonds

 Queen of Diamonds

 Three of Hearts

 Four of Hearts

 Queen of Hearts

 Two of Spades

 Four of Spades

 Five of Spades

 A random
10-card deck D D.sort()

 Sorts by suit first, then rank.

Since D is a Deck object, Python invokes the

sort method defined in the Deck class.

 Three of Hearts

 Four of Spades

 Seven of Diamonds

 Five of Spades

 Queen of Diamonds

 Four of Hearts

 Ten of Diamonds

 Queen of Hearts

 Two of Spades

 Ace of Clubs

 Ace of Clubs

 Two of Spades

 Three of Hearts

 Four of Hearts

 Four of Spades

 Five of Spades

 Seven of Diamonds

 Ten of Diamonds

 Queen of Diamonds

 Queen of Hearts

 A random
10-card Hand H H.sort()

 Sorts by rank first, then suit.

Since H is a Hand object, Python invokes the

sort method defined in the Hand class.

A Couple of Examples

Dealing 4 Bridge Hands

D = Deck(); D.shuffle()

L = []

for k in range(4):

 L.append(Hand(str(k))

for k in range(52):

 L[k%4].add_card(D.pop_card())

for k in range(4):

 print L[k].sort()

Set up and shuffle the deck

Dealing 4 Bridge Hands

D = Deck(); D.shuffle()

L = []

for k in range(4):

 L.append(Hand(str(k))

for k in range(52):

 L[k%4].add_card(D.pop_card())

for k in range(4):

 print L[k].sort()

Set Up a length-4 list of Hands

Dealing 4 Bridge Hands

D = Deck(); D.shuffle()

L = []

for k in range(4):

 L.append(Hand(str(k))

for k in range(52):

 L[k%4].add_card(D.pop_card())

for k in range(4):

 print L[k].sort()

Get a card from the Deck

Dealing 4 Bridge Hands

D = Deck(); D.shuffle()

L = []

for k in range(4):

 L.append(Hand(str(k))

for k in range(52):

 L[k%4].add_card(D.pop_card())

for k in range(4):

 print L[k].sort()

Add to every 4th hand

Dealing 4 Bridge Hands

D = Deck(); D.shuffle()

L = []

for k in range(4):

 L.append(Hand(str(k))

for k in range(52):

 L[k%4].add_card(D.pop_card())

for k in range(4):

 print L[k].sort()

Sort and print each Hand

Next Example from Poker

Probability of a Full House

Core Problem: When does a 5-card hand consist

of two of one rank and three of another?

 Seven of Spades

 Seven of Diamonds

 Ten of Clubs

 Ten of Spades

 Ten of Diamonds

 Four of Spades

 Four of Diamonds

 Jack of Hearts

 Jack of Clubs

 Jack of Spades

Is a Hand H a Full House?

H.sort()

r = []

for c in H.cards:

 r.append(c.rank)

B1 = (r[0]==r[1]==r[2])and (r[3]==r[4])

B2 = (r[0]==r[1])and (r[2]==r[3]==r[4])

If B1 or B2:

 print ‘Full House’

Is a Hand H a Full House?

H.sort()

r = []

for c in H.cards:

 r.append(c.rank)

B1 = (r[0]==r[1]==r[2])and (r[3]==r[4])

B2 = (r[0]==r[1])and (r[2]==r[3]==r[4])

if B1 or B2:

 print ‘Full House’

 Sort the Hand by rank

Three Hands

 Seven of Spades

 Seven of Diamonds

 Seven of Clubs

 Ten of Spades

 Ten of Diamonds

 Four of Spades

 Four of Diamonds

 Jack of Hearts

 Jack of Clubs

 Jack of Spades

 Four of Spades

 Four of Diamonds

 Five of Hearts

 Jack of Clubs

 Jack of Spades

Yes: Yes:

No:

Is a Hand H a Full House?

H.sort()

r = []

for c in H.cards:

 r.append(c.rank)

B1 = (r[0]==r[1]==r[2])and (r[3]==r[4])

B2 = (r[0]==r[1])and (r[2]==r[3]==r[4])

If B1 or B2:

 print ‘Full House’

 Form a list of the ranks

Is a Hand H a Full House?

H.sort()

r = []

for c in H.cards:

 r.append(c.rank)

B1 = (r[0]==r[1]==r[2])and (r[3]==r[4])

B2 = (r[0]==r[1])and (r[2]==r[3]==r[4])

if B1 or B2:

 print ‘Full House’

 Boolean Business

