21. Sorting a List

Topics:
- Selection Sort
- Merge Sort

Our examples will highlight the interplay between functions and lists.

Sorting a List of Numbers

Before:
\[x \rightarrow 50 \ 40 \ 10 \ 80 \ 20 \ 60 \]

After:
\[x \rightarrow 10 \ 20 \ 40 \ 50 \ 60 \ 80 \]

We Will First Implement the Method of Selection Sort

At the Start:
\[x \rightarrow 50 \ 40 \ 10 \ 80 \ 20 \ 60 \]

High-Level:
for k in range(len(x)-1)
 Swap x[k] with the smallest value in x[k:]

Selection Sort: How It Works

Before:
\[x \rightarrow 50 \ 40 \ 10 \ 80 \ 20 \ 60 \]

Swap x[0] with the smallest value in x[0:]

After:
\[x \rightarrow 10 \ 40 \ 50 \ 80 \ 20 \ 60 \]
Selection Sort: How It Works

Before:

\[x \rightarrow 10 \ 40 \ 50 \ 80 \ 20 \ 60 \]

Swap \(x[1] \) with the smallest value in \(x[1:] \)

After:

\[x \rightarrow 10 \ 40 \ 50 \ 80 \ 20 \ 60 \]

Selection Sort: How It Works

Before:

\[x \rightarrow 10 \ 20 \ 50 \ 80 \ 40 \ 60 \]

Swap \(x[2] \) with the smallest value in \(x[2:] \)

After:

\[x \rightarrow 10 \ 20 \ 50 \ 80 \ 40 \ 60 \]

Selection Sort: How It Works

Before:

\[x \rightarrow 10 \ 20 \ 40 \ 80 \ 50 \ 60 \]

Swap \(x[3] \) with the smallest value in \(x[3:] \)

After:

\[x \rightarrow 10 \ 20 \ 40 \ 80 \ 50 \ 60 \]
Selection Sort: How It Works

Before:

\[x \rightarrow [10, 20, 40, 50, 80, 60] \]

Swap \(x[4] \) with the smallest value in \(x[4:] \)

Selection Sort: Recap

After:

\[x \rightarrow [10, 20, 40, 50, 80, 60] \]

The Essential Helper Function: \(\text{Select}(x,i) \)

```python
def Select(x,i):
    """ Swaps the smallest value in \( x[i:] \) with \( x[i] \)""
    PreC: x is a list of integers and i is an in that satisfies 0<=i<len(x)"
    Does not return anything and it has a list argument
```

How Does it Work?

The calling program has a list. E.g.,

\[a \rightarrow [0 \rightarrow 50, 1 \rightarrow 40, 2 \rightarrow 10, 3 \rightarrow 80, 4 \rightarrow 20, 5 \rightarrow 60] \]

How Does it Work?

The calling program executes \(\text{Select}(a,0) \) and control passes to \(\text{Select} \)
How Does Select Work?

- Nothing new about the assignment of 0 to i.
- But there is no assignment of the list a to x.
- Instead x now refers to the same list as a.

```
  a ---> 0 ----> 50
        1 ----> 40
        2 ----> 10
        3 ----> 80
        4 ----> 20
        5 ----> 60
```

How Does Select Work?

If inside Select we have

```
t = x[0]; x[0] = x[2]; x[2] = t
```

it is as if we said

```
t = a[0]; a[0] = a[2]; a[2] = t
```

```
  a ---> 0 ----> 50
        1 ----> 40
        2 ----> 10
        3 ----> 80
        4 ----> 20
        5 ----> 60
```

How Does Select Work?

It changes the list a in the calling program.
We say x and a are aliased. They refer to the same list

```
  a ---> 0 ----> 10
        1 ----> 40
        2 ----> 50
        3 ----> 80
        4 ----> 20
        5 ----> 60
```

Let's Assume This Is Implemented

```
def Select(x, i):
    """ Swaps the smallest value in x[i:] with x[i]"
    t = x[i]; x[i] = x[i+1]; x[i+1] = t

    PreC: x is a list of integers and i is an in that satisfies 0 <= i < len(x)"
```

In General We Have This

```
def SelectionSort(a):
    n = len(a)
    for k in range(n):
        Select(a, k)
```
Next Problem

Merging Two Sorted Lists into a Single Sorted List

Example

\[x \rightarrow 12 \ 33 \ 35 \ 45 \]
\[y \rightarrow 15 \ 42 \ 55 \ 65 \ 75 \]
\[z \rightarrow 12 \ 15 \ 33 \ 35 \ 42 \ 45 \ 55 \ 65 \ 75 \]

Merging Two Sorted Lists

\[x \rightarrow 12 \ 33 \ 35 \ 45 \]
\[y \rightarrow 15 \ 42 \ 55 \ 65 \ 75 \]
\[z \rightarrow [] \]

Do we pick from \(x \)?

\[x[ix] \leq y[iy] \text{ ???} \]

Merge

\[x \rightarrow 12 \ 33 \ 35 \ 45 \]
\[y \rightarrow 15 \ 42 \ 55 \ 65 \ 75 \]
\[z \rightarrow 12 \]

Yes. So update \(ix \)

Do we pick from \(x \)?

\[x[ix] \leq y[iy] \text{ ???} \]
Merge

x -> 12 33 35 45
 iy: 0
y -> 15 42 55 65 75
 iy: 1
z -> 12 15

No. So update iy

Merge

x -> 12 33 35 45
 iy: 1
y -> 15 42 55 65 75
 iy: 1
z -> 12 15

Do we pick from x? x[ix] <= y[iy] ??

Merge

x -> 12 33 35 45
 iy: 1
y -> 15 42 55 65 75
 iy: 1
z -> 12 15 33

Yes. So update ix

Merge

x -> 12 33 35 45
 iy: 2
y -> 15 42 55 65 75
 iy: 1
z -> 12 15 33

Do we pick from x? x[ix] <= y[iy] ??

Merge

x -> 12 33 35 45
 iy: 2
y -> 15 42 55 65 75
 iy: 1
z -> 12 15 33 35

Yes. So update ix

Merge

x -> 12 33 35 45
 iy: 3
y -> 15 42 55 65 75
 iy: 1
z -> 12 15 33 35

Do we pick from x? x[ix] <= y[iy] ??
Merge

x→ 12 33 35 45
y→ 15 42 55 65 75
z→ 12 15 33 35 42

No. So update iy...

Merge

x→ 12 33 35 45
y→ 15 42 55 65 75
z→ 12 15 33 35 42

Do we pick from x? x[ix] <= y[iy] ???

Merge

x→ 12 33 35 45
y→ 15 42 55 65 75
z→ 12 15 33 35 42 45

Yes. So update ix.

Merge

x→ 12 33 35 45
y→ 15 42 55 65 75
z→ 12 15 33 35 42 45

Done with x. Pick from y

Merge

x→ 12 33 35 45
y→ 15 42 55 65 75
z→ 12 15 33 35 42 45

Done with x. Pick from y

Merge

x→ 12 33 35 45
y→ 15 42 55 65 75
z→ 12 15 33 35 42 45 55

Update iy
Merge

\[x \rightarrow 12 \ 33 \ 35 \ 45\]
\[y \rightarrow 15 \ 42 \ 55 \ 65 \ 75\]
\[z \rightarrow 12 \ 15 \ 33 \ 35 \ 42 \ 45 \ 55 \ 65\]

So update iy.

x: 4
y: 3
z: 5

Merge

\[x \rightarrow 12 \ 33 \ 35 \ 45\]
\[y \rightarrow 15 \ 42 \ 55 \ 65 \ 75\]
\[z \rightarrow 12 \ 15 \ 33 \ 35 \ 42 \ 45 \ 55 \ 65 \ 75\]

Done with x. Pick from y

Merge

\[x \rightarrow 12 \ 33 \ 35 \ 45\]
\[y \rightarrow 15 \ 42 \ 55 \ 65 \ 75\]
\[z \rightarrow 12 \ 15 \ 33 \ 35 \ 42 \ 45 \ 55 \ 65 \ 75\]

All Done

The Python Implementation...

def Merge(x, y):
 n = len(x); m = len(y);
 ix = 0; iy = 0; z = []
 for iz in range(n+m):
 if ix>=n:
 z.append(y[iy]); iy+=1
 elif iy>=m:
 z.append(x[ix]); ix+=1
 elif x[ix] <= y[iy]:
 z.append(x[ix]); ix+=1
 else:
 z.append(y[iy]); iy+=1
 return z

Build z up via repeated appending

x-list exhausted y-list exhausted x-value smaller y-value smaller
```python
def Merge(x, y):
    n = len(x); m = len(y);
    ix = 0; iy = 0; z = []
    for iz in range(n+m):
        if ix>=n:
            z.append(y[iy]); iy+=1
        elif iy>=m:
            z.append(x[ix]); ix+=1
        elif x[ix] <= y[iy]:
            z.append(x[ix]); ix+=1
        elif x[ix] > y[iy]:
            z.append(y[iy]); iy+=1
    return z
```

- `len(x)+len(y)` is the total length of the merged list.

Implementation Using Pop

```python
def Merge(x, y):
    u = list(x)
    v = list(y)
    z = []
    while len(u)>0 and len(v)>0:
        if u[0]<=v[0]:
            g = u.pop(0)
        else:
            g = v.pop(0)
        z.append(g)
    z.extend(u)
    z.extend(v)
    return z
```

- Make copies of the incoming lists.
- Every "pop" reduces the length by 1. The loop shuts down when one of u or v is exhausted.
- g gets the popped value and it is appended to z.
- Add what is left in u. OK if u is the empty list.
Implementation Using Pop

```python
def Merge(x, y):
    u = list(x)
    v = list(y)
    z = []
    while len(u) > 0 and len(v) > 0:
        if u[0] <= v[0]:
            g = u.pop(0)
        else:
            g = v.pop(0)
        z.append(g)
    z.extend(u)
    z.extend(v)
    return z
```

MergeSort

Binary Search is an example of a "divide and conquer" approach to problem solving.

A method for sorting a list that features this strategy is MergeSort.

Motivation

You are asked to sort a list but you have two "helpers": H1 and H2.

Idea:

1. Split the list in half and have each helper sort one of the halves.
2. Then merge the two sorted lists into a single larger list.

This idea can be repeated if H1 has two helpers and H2 has two helpers.

Subdivide the Sorting Task

```
| E | M | C | R | K | A | Q | F | L | P | D | R | C | J | N
```

```
| E | M | C | R | K | A | Q | F | L | P | D | R | C | J | N
```

Subdivide Again

```
| E | M | C | R | K | A | Q | F | L | P | D | R | C | J | N
```

```
| E | M | C | R | K | A | Q | F | L | P | D | R | C | J | N
```

And Again

```
| E | M | C | R | K | A | Q | F | L | P | D | R | C | J | N
```

```
| E | M | C | R | K | A | Q | F | L | P | D | R | C | J | N
```
And One Last Time

Now Merge

And Merge Again

And Again

And One Last Time

Done!
Let’s write a function to do this making use of

def Merge(x, y):
 """ Returns a float list that is the
 merge of sorted lists x and y.
 PreC: x and y are lists of floats
 that are sorted from small to big.
 """

Handcoding the n =16 case

A0 = Merge(a[0], a[1])
A1 = Merge(a[2], a[3])
A2 = Merge(a[4], a[5])
A3 = Merge(a[6], a[7])
A4 = Merge(a[8], a[9])
A5 = Merge(a[10], a[11])
A6 = Merge(a[12], a[13])
A7 = Merge(a[14], a[15])

Handcoding the n =16 case

B0 = Merge(A0, A1)
B1 = Merge(A2, A3)
B2 = Merge(A4, A5)
B3 = Merge(A6, A7)
Handcoding the \(n = 16 \) case

\[
\begin{align*}
C_0 &= \text{Merge}(B_0, B_1) \\
C_1 &= \text{Merge}(B_2, B_3)
\end{align*}
\]

1 Merge Producing a Length-16 List

For general \(n \), it can be handled using recursion.

All Done!

\[
D_0 = \text{Merge}(C_0, C_1)
\]

Recursive Merge Sort

\[
\begin{align*}
def \text{MergeSort}(a): \\
& n = \text{length}(a) \\
& \text{if } n=1: \\
& \quad \text{return } a \\
& \text{else:} \\
& \quad m = n/2 \\
& \quad u_0 = \text{list}(a[0:m]) \\
& \quad u_1 = \text{list}(a[m:]) \\
& \quad y_0 = \text{MergeSort}(u_0) \\
& \quad y_1 = \text{MergeSort}(u_1) \\
& \quad \text{return } \text{Merge}(y_0, y_1)
\end{align*}
\]

Back To Merge Sort

Recursive Merge Sort

\[
\begin{align*}
def \text{MergeSort}(a): \\
& n = \text{length}(a) \\
& \text{if } n=1: \\
& \quad \text{return } a \\
& \text{else:} \\
& \quad m = n/2 \\
& \quad u_0 = \text{list}(a[0:m]) \\
& \quad u_1 = \text{list}(a[m:]) \\
& \quad y_0 = \text{MergeSort}(u_0) \\
& \quad y_1 = \text{MergeSort}(u_1) \\
& \quad \text{return } \text{Merge}(y_0, y_1)
\end{align*}
\]

A function can call itself!
A Sorted List is produced at each "." Let's look at the order in which lists are sorted.
A Sorted List is produced at each "::". Let's look at the order in which lists are sorted.
Some Conclusions

Infinite recursion (like infinite loops) can happen so careful reasoning is required.

Will we reach the “base case”?

In MergeSort, a recursive call always involves a list that is shorter than the input list. So eventually we reach the $\text{len}(a)=1$ base case.