20. More Complicated Classes

Topics:

Example: The class Fraction Operator Overloading Class Invariants Example: The class SimpleDate Class Variables deepcopy

A Class For Manipulating Fractions

```
You in Grade School:
\[
\begin{aligned}
2 / 3+13 / 6 & =(2 * 6+13 * 3) /(3 * 6) \\
& =51 / 18 \\
& =17 / 6
\end{aligned}
\]
```

$\ggg \mathrm{x}=$ Fraction $(2,3)$
$\gg y=$ Fraction $(13,6)$
$\ggg z=x+y$
>>> print z
17/6

A Class For Manipulating

 Fractions$$
\begin{aligned}
2 / 3 * 3 / 4 & =(2 * 3) /(3 * 4) \\
& =6 / 12
\end{aligned}
$$

$$
=1 / 2
$$

>>> $x=$ Fraction $(2,3)$
>>> y $=$ Fraction $(3,4)$
>>> $z=x+y$
>>> print z
1/2

Let's Define a Class to Do This Stuff

Still not good enough. Fractions should be reduced to lowest terms, e.g., $-3 / 2$ not $-24 / 16$

```
class Fraction(object):
```

class Fraction(object):
Attributes:
Attributes:
num: the numerator [int]
num: the numerator [int]
den: the denominator [nonzero int]
den: the denominator [nonzero int]
"""

```
\(\qquad\)
redicediolone

Let's Define a Class to Do This Stuff
class Fraction (object) : """

\section*{Attributes:}
num: the numerator [int]
den: the denominator [int]
\(\qquad\)

Not good enough. Do not want zero denominators!

\section*{A Note About Greatest Common Divisors}
\begin{tabular}{|cccc|}
\hline\(p\) & \(q\) & \(g c d(p, q)\) & \(p / q\) \\
\hdashline 16 & 24 & 8 & \(2 / 3\) \\
19 & 47 & 1 & \(19 / 47\) \\
15 & 25 & 5 & \(3 / 5\) \\
\hline
\end{tabular}

Reducing a fraction to lowest terms involves finding the gcd of the numerator and denominator and dividing.

\section*{Computing the Greatest Common Divisor}
```

def gcd (a,b):
a = abs(a)
b = abs (b)
r = a%b
while r>0:
a = b
b = r
r = a%b
return b

```

Euclid's Algorithm 300BC

We will assume this is given and won' \(\dagger\) worry why it works

\section*{The Constructor}
```

def __init__(self,p,q=1):
d = gcd (p,q)
self.num = p/d
self.den = q/d

```
>>> \(x=\) Fraction \((10,4)\) >>> print \(x\)
5/2
>>> x = Fraction(10) >>> print \(x\) 10/1

Whole numbers are fractions too. Handy to use the optional argument feature.

\section*{Let's Look at the Methods Defined in the Class Fraction}

Informal synopsis:


\section*{The invert Method}
```

def invert(self):
""" Returns the reciprocal of self
PreC: self is not zero
"""
F = Fraction(self.den,self.num)
return F

```
```

```
>>> x = Fraction(6,-5)
```

```
>>> x = Fraction(6,-5)
>>> print x
>>> print x
-6/5
-6/5
>>> y = x.negate()
>>> y = x.negate()
>>> print y
>>> print y
6/5
```

```
6/5
```

```

\section*{The negate Method}
```

def negate(self):
""" Returns the negative of self
"""
F = Fraction(-self.num,self.den)
return P

```

\section*{Back to the Class Definition}
```

```
class Fraction(object):
```

```
class Fraction(object):
    """
    """
    Attributes:
    Attributes:
        num: the numerator [int]
        num: the numerator [int]
        den: the denominator [nonzero int]
        den: the denominator [nonzero int]
        num/den is reduced to lowest terms
        num/den is reduced to lowest terms
    """
```

```
    """
```

```

These "rules" define a class invariant. Properties that all Fraction objects obey.

\section*{Consider Addition}
```

s = 'dogs' + 'and' + 'cats'
x = 100 + 200 + 300
y = 1.2 + 3.4 + 5.6

```

What "+" signals depends on the operands. Python figures it out.
We say that the "+" operation is overloaded.

\section*{Likewise for Multiplication}
```

def __mul__(self,f):
N = self.num*f.num
D = self.den*f.den
return Fraction(N,D)

```
```

>>> A = Fraction(2,3)
>> B = Fraction(1,4)
>>> C = A*B
>> print c
1/6 >>> $\mathrm{C}=\mathrm{A}$ * B 1/6

```

\section*{By defining__mul__this} way we cansay
this
instead of
instead of
A.__mul_(B)

\section*{Let's Define "+" For Fractions}
```

def __add__(self,f):
N= se\overline{lf.num*f.den + self.den*f.num}
D = self.den*f.den
return Fraction(N,D)

```
```

>>> A = Fraction (2,3)
>>> B = Fraction(1,4)
>> C=A+B
>>> print C
11/12

```

By defining __add__ this way we can say
instead of \(A+B\)
A.__add__(B)

Underlying math: \(a / b+c / d=(a d+b c) / b d\)

\section*{Would Like Some Flexibility}

Sometimes we would like to add an integer to a fraction:
\[
2 / 3+5=17 / 3
\]

To make this happen Python needs to know the type of the operands, i.e., "who is to the right of the "+" and who is to the left of the " + "?

\section*{Using the Built-In Boolean-} Valued Function isinstance
```

>>> x = 3/2
>>> isinstance(x,Fraction)
False
>>> y = Fraction (3,2)
>>> isinstance(y,Fraction)
True

```

Feed isinstance it the "mystery" object and a class and it will tell you if the object is an instance of the class.

A More Flexible \(\qquad\) add \(\qquad\)
```

def __add__(self,f):
if isinstance(f,Fraction):
N = self.num*f.den + self.den*f.num
D = self.den*f.den
else:
N = self.num + self.den*f
D = self.den
return Fraction (N,D)

```
    If \(f\) is a Fraction, use \((a / b+c / d)=(a d+b c) /(b d)\)

\section*{A More Flexible}
\(\qquad\) add
```

def___add__(self,f):
if isinstance(f,Fraction):
N = self.num*f.den + self.den*f.num
D = self.den*f.den
else:
N = self.num + self.den*f
D = self.den
return Fraction (N,D)

```
        If \(f\) is an integer, use \((a / b+f)=(a+b f) / b\)

A More Flexible \(\qquad\) mul \(\qquad\)
```

def mul (self,f):
if isinstance(f,Fraction):
N = self.num*f.num
D = self.den*f.den
else:
N = self.num*f
D = self.den
return Fraction (N,D)

```

If \(f\) is an int, use \((a / b)(f)=(a f) / b\)

\section*{An Example}

Let's compute \(1+1 / 2+1 / 3+\ldots+1 / 15\)


A More Flexible \(\qquad\)
def _mul__(self,f):
    if isinstance(f,Fraction):
            \(\mathrm{N}=\) self.num*f.num
            D \(=\) self.den*f.den
    else:
            \(\mathrm{N}=\) self.num*f
            D = self.den
    return Fraction (N, D)

If \(f\) is a Fraction, use \((a / b)(c / d)=(a c) /(b d)\)

\section*{Be Careful!} a Fraction, the int mus be on the right side of the +
\(\gg H=1+F\)
Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unsupported operand type (s) for +: 'int' and 'instance'
```

>>> F = Fraction (2,3)
>>> F = Fraction (2,3)
>>>G=F+1 When you add an int to
>>>G=F+1 When you add an int to
>>> print G
>>> print G
5/3
5/3

Next, a Class that Supports Computations with Dates

If Today is July 4, 1776, then What is Tomorrow's Date?

```
>>> D = SimpleDate('7/4/1776')
>>> print D
July 4, 1776
>>> E = D.Tomorrow()
>>> print E
July 5, 1776
```


How Many Days from
 Pearl Harbor to 9/11?

```
>>> D1 = SimpleDate('9/11/2001')
>>> D2 = SimpleDate('12/7/1941')
>>> NumDays = D1-D2
>>> print NumDays
21828

\section*{The Attributes}
class SimpleDate (object) : "" "
Attributes:
m : index of month [int]
\(d\) : the day [int]
\(y\) : the year [int]
\(m, d\), and \(y\) identify a
valid date.
"" "

\section*{Class Variables}

To pull this off, it will be handy to have a "class variable" that houses information that figures in date-related computations...
nDays \(=[0,31,28,31,30,31,30,31,31,30,31,30,31]\)

\section*{The Leap Year Problem}

An integery is a leap year if it is not a century year and is divisible by 4 or if is a century year and is divisible by 400.
```

def isLeapYear(self):
""" Returns True if and only if
self encodes a date that part of
a leap year.
thisWay = ((y%100>0) and y%4==0)
thatWay = ((y%100==0) and (y%400==0))
return thisWay or thatWay

```

\section*{Visualizinga SimpleDate Object}
>> D = SimpleDate ('7/4/1776')


\section*{The SimpleDate Constructor}

Note that
D = SimpleDate ('7/32/1776')
and
D = SimpleDate ('2/29/2015')
produce SimpleDate objects that encode invalid dates.

\section*{Use Class Variable nDays}
nDays \(=[0,31,28,31,30,31,30,31,31,30,31,30,31]\)
v = s.split('/')
\(\mathrm{m}=\operatorname{int}(\mathrm{v}[0]) ; \mathrm{d}=\operatorname{int}(\mathrm{v}[1]) ; \mathrm{y}=\operatorname{int}(\mathrm{v}[2])\)
assert \(1<=\mathrm{m}<=12\), 'Invalid Month'
assert \(1<=d<=s e l f . n D a y s[m], ~ ' I n v a l i d ~ D a y ' ~\)

The SimpleDate Constructor
def __init__(self,s):
""" Returns a reference to a SimpleDate representation of the date encoded in \(s\).

PreC: \(s\) is a date string of the form 'M/D/Y' where \(M, D\) and \(Y\) encode the month index, the day, and the year.
"" "
\(\mathrm{v}=\mathrm{s} . \operatorname{split}(\mathrm{l} / \mathrm{\prime})\)
\(\mathrm{m}=\operatorname{int}(\mathrm{v}[0]), \mathrm{d}=\operatorname{int}(\mathrm{v}[1]), \mathrm{y}=\operatorname{int}(\mathrm{v}[2])\) self.m \(=m\), self. \(d=d\), self. \(y=y\)

If \(s={ }^{\prime} 7 / 4 / 1776^{\prime}\) then \(v=\left[{ }^{\prime} 7 \prime, 4^{\prime}, ~ ' 1776 \prime\right]\)

\section*{The SimpleDate Constructor}
def __init__(self,s):
""" Returns a reference to a SimpleDate representation of the date encoded in \(s\).

PreC: \(s\) is a date string of the form 'M/D/Y' where \(M, D\) and \(Y\) encode the month index, the day, and the year.
"" "
\(\mathbf{v}=\) s.split('/')
\(m=\operatorname{int}(v[0]) ; d=\operatorname{int}(v[1]) ; y=i n t(v[2])\)
self.m \(=\mathrm{m} ; ~ s e l f . d=d ; \operatorname{self} \cdot y=y\)

A good place to guard against "bad" input using assert.

\section*{Some SimpleDate Methods}

Informally...
Tomorrow the next day's date
__eq__ whenare two dates the same?
__add__ \(7 / 4 / 1776^{\prime}+364\) is ' \(7 / 3 / 17777^{\prime}\)
__sub__ \(3 / 2 / 2016^{\prime}-2 / 28 / 2016^{\prime}\) is 3

\section*{Visualizing the Overall Class}
\begin{tabular}{l|l} 
class SimpleDate (object) : & \\
nDays = [ blah ] & Class Variables \\
def_init__(self,s) : & Constructor \\
def_str__(self): & \\
def_eq_(self,other) : & \\
def__add_(self,other) & Methods \\
def_sub_(self,other) : & \\
def Tomorrow (self) : & \\
def isLeapYear(self):
\end{tabular}

\section*{The Method Tomorrow}

Need abunch of if constructions to handle end-of-month and end-of-year situations with possible leap year issues:
\[
\begin{array}{lll}
' 7 / 4 / 1776^{\prime} & ---> & ' 7 / 5 / 1776^{\prime} \\
' 2 / 28 / 1776^{\prime} & ---> & ' 2 / 29 / 1776^{\prime} \\
' 2 / 28 / 1777 \prime & ---> & ' 3 / 1 / 1777 \prime \\
' 7 / 31 / 1776^{\prime} & ---> & ' 8 / 1 / 1776^{\prime} \\
' 12 / 31 / 1776^{\prime} & ---> & ' 1 / 1 / 1777 \prime
\end{array}
\]



\section*{Referencing a Class Variable}
def Tomorrow(self):
\(\mathrm{m}=\mathrm{self} . \mathrm{m}\)
d = self.d
\(y=\operatorname{self} . y\)
Last \(=\) self.nDays[m]
if isLeapYear \((y)\) and \(m==2\) :
Last+=1
:

\section*{More on Copying Objects}
```

>>> B = copy(A)

```


\section*{More on Copying Objects}

A subtle issue is involved if you try to copy objects that have attributes that are objects themselves.

\section*{More on Copying Objects}

To illustrate consider this class
```

class MyColor:

```
class MyColor:
    """
    """
    Attributes:
    Attributes:
        rgb: length-3 float list
        rgb: length-3 float list
        name: str
        name: str
    """
    """
    def __init__(self,rgb,name):
    def __init__(self,rgb,name):
    self.rgb = rgb
    self.rgb = rgb
        self.name = name
```

 self.name = name
    ```

More on Copying Objects
>> A = MyColor ([1, 0, 0],'red')


\section*{More on Copying Objects}
\(\gg B=\operatorname{copy}(A)\)

```

