19. Recursion

Recursive Tiling
Random Mondrian
Recursive Evaluation of n!
Tracking a Recursive Function Call
What is Recursion?

A function is recursive if it calls itself.

A pattern is recursive if it is defined in terms of itself.

I can tell you what this is in terms of what that is.
The Concept of Recursion Is Hard But VERY Important

Teaching Plan:

Develop a recursive triangle-tiling procedure informally.

Fully implement (in Python) a recursive rectangle-tiling procedure.

Fully implement a recursive function for \(n! \)

Fully implement a recursive function for sorting (in a later lecture).
Recursive Graphics

We will develop a graphics procedure that draws this:

The procedure will call itself.

We are tiling a triangle with increasingly smaller triangles.
Tiling a Triangle

We start with one big triangle:
Tiling a Triangle

And are to end up with this:
Requires Repetition

Given a yellow triangle

Define the inner triangle and the 3 corner triangles

Color the inner triangle and repeat the process on the 3 corner triangles
“Repeat the Process”

Visit every yellow triangle and replace it with this.
We Get This...
“Repeat the Process”

Visit every yellow triangle and replace it with
We Get This...
“Repeat the Process”

Visit every yellow triangle and replace it with
We Get This...

Etc.
The Notion of Level

A 0-level tiling
A 1-level tiling
A 2-level tiling
A 3-level tiling
The Connection Between Levels

A 3-level tiling

To display a 3-level tiling you do this:
- display the inner triangle T0
- display a 2-level tiling of corner triangles T1, T2, and T3

A 2-level tiling
The Connection Between Levels

To display an N-level tiling you do this:
- display the inner triangle T_0
- display an $(N-1)$-level tiling of triangles T_1, T_2, and T_3
def Tile(T, level):
 # PreC: T a triangle
 if Level == 0:
 Draw T (yellow)
 else:
 # Let T0 be the inner triangle and
 # T1, T2, and T3 be the corner triangles
 Draw T0 (magenta)
 Tile(T1, level-1)
 Tile(T2, level-1)
 Tile(T3, level-1)

This is the “base case”. A 0-level tiling just draws the input triangle.

These are the recursive procedure calls. The procedure Tile calls itself three times.
A Note on Chopping up a Region into Triangles...
Step One in simulating flow around an airfoil is to generate a triangular mesh and (say) estimate the velocity at each little triangle using physics and math.
Another Example: Random Mondrians

Using Python:
Random Mondrian

Given This:
Random Mondrian

Draw This:
The Subdivide Process Applies to a Rectangle

Given a rectangle specified by its length, width, and center, either randomly color it or randomly subdivide it.
Subdivision Starts with a Random Dart Throw
This Defines 4 Smaller Rectangles

Repeat the process on each of the 4 smaller rectangles...
This Defines 4 Smaller Rectangles

We can again repeat the process on each of the 16 smaller rectangles. Etc.
The Notion of Level

A 1-level Partitioning

A 2-level Partitioning
def Mondrian(x, y, L, W, level):
 if level == 0:
 c = RandomColor()
 DrawRect(x, y, L, W, FillColor=c)
 else:
 # Subdivide into 4 smaller rectangles
 Mondrian(upper left rectangle info, level - 1)
 Mondrian(upper right rectangle info, level - 1)
 Mondrian(lower left rectangle info, level - 1)
 Mondrian(lower right rectangle info, level - 1)
How to Generate Random Colors

We need some new technology to organize the selection random colors.

We need lists whose entries are lists.
Lists with Entries that Are Lists

An Example:

cyan = [0.0, 1.0, 1.0]
magenta = [1.0, 0.0, 1.0]
yellow = [1.0, 1.0, 0.0]
colorList = [cyan, magenta, yellow]
Pick a Color at Random

cyan = \[0.0,1.0,1.0\]
magenta = \[1.0,0.0,1.0\]
yellow = \[1.0,1.0,0.0\]
colorList = [cyan,magenta,yellow]
r = randi(0,2)
randomColor = colorList[r]
from simpleGraphics import *
from random import randint as randi

def RandomColor():
 """ Returns a randomly selected rgb list."""
 c = [RED, GREEN, BLUE, ORANGE, CYAN]
 i = randi(0, len(c) - 1)
 return c[i]
How to Randomly Subdivide a Rectangle

\[(x_c, y_c) \]

\[(x, y) \]

\[L \]

\[W \]

\[x_c = \text{randu}(x-L/2, x+L/2) \]

\[y_c = \text{randu}(y-W/2, y+W/2) \]
The Math Behind the Little Rectangles

The upper right rectangle is typical:

- **Length:** $L_1 = (x+L/2) - x_c$
- **Width:** $W_1 = (y+W/2) - y_c$
- **Center:** $(x_c+L_1/2, y_c+W_1/2)$
A couple of features to make the design more interesting:

(1) The dart throw that determines the subdivision can't land too near the edge. No super skinny tiles!

(2) Randomly decide whether or not to subdivide. This creates a nice diversity in size.
Next Up

A Non-Graphics Example of Recursion: The Factorial Function
Recursive Evaluation of Factorial

Recall the factorial function:

```python
def F(n):
    x = 1
    for k in range(1, n+1):
        x = x*k
    return x
```

5! = 1\times2\times3\times4\times5
Recursive Evaluation of Factorial

Q. How would you compute $6!$ given that you have computed $5! = 120$?

A. $6! = 120 \times 6$
Recursive Evaluation of Factorial

def F(n):
 if n<=1:
 return 1
 else:
 a = F(n-1)
 return n*a

How does this work?
Executing $F(3)$

$$m = 3$$

$$x = F(m)$$

print x

We are in the calling script
The function F is called with argument 3. We open up a call frame.
Executing F(3)

```python
def F(n):
    if n <= 1:
        return 1
    else:
        a = F(n-1)
        return n*a

m = 3
x = F(m)
print x
```

We encounter a function call. F is called with argument equal to 2.
Executing F(3)

\[m = 3 \]
\[x = F(m) \]
\[\text{print } x \]

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

```
m -> 3
x -> 

n -> 3
a -> 
return 

n -> 
a -> 
return 
```

We open up a call frame.
Executing F(3)

m = 3
x = F(m)
print x

def F(n):
 if n<=1:
 return 1
 else:
 a = F(n-1)
 return n*a

We encounter a function call. F is called with argument 1

m -- 3
x --

n -- 3
a --
return

n -- 2
a --
return
Executing $F(3)$

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

$m = 3$

$x = F(m)$

`print x`

We open up a call frame.
Executing $F(3)$

$m = 3$
$x = F(m)$
print x

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

The value of 1 is “assigned” to return
Executing F(3)

\[
m = 3
\]

\[
x = F(m)
\]

\[
\text{print } x
\]

\[
def F(n):
 \text{if } n \leq 1:
 \text{return } 1
 \text{else:}
 a = F(n-1)
 \text{return } n*a
\]

The value is sent back to the caller.
m = 3
x = F(m)
print x

def F(n):
 if n<=1:
 return 1
 else:
 a = F(n-1)
 return n*a

That function call is over
Executing $F(3)$

```
m = 3

x = F(m)

print x
```

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

```
Control now passes to this “edition” of $F$
```

```
m --> 3

x --> 3

n --> 3

a --> 3

return

n --> 2

a --> 1

return
```
Executing $F(3)$

$m = 3$
$x = F(m)$
print x

def $F(n)$:
 if $n \leq 1$:
 return 1
 else:
 $a = F(n-1)$
 return $n*a$

Control passes to this “edition” of F. The value 2 is “assigned” to return
Executing $F(3)$

```python
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

$m = 3$

$x = F(m)$

print x

The value is returned to the caller.
Executing $F(3)$

$m = 3$

$x = F(m)$

print x

def $F(n)$:
 if $n \leq 1$:
 return 1
 else:
 $a = F(n-1)$
 return $n \times a$

$m \rightarrow 3$

$x \rightarrow$

Control now passes to this "edition" of F
Executing $F(3)$

\[m = 3\]
\[x = F(m)\]
print x

def $F(n)$:
 if $n \leq 1$:
 return 1
 else:
 $a = F(n-1)$
 return $n*a$

The value 6 is “assigned” to return
Executing F(3)

```
def F(n):
    if n<=1:
        return 1
    else:
        a = F(n-1)
        return n*a
```

```
m = 3
x = F(m)
print x
```

The value is returned to the caller.
Executing $F(3)$

$m = 3$
$x = F(m)$
print x

def $F(n)$:
 if $n \leq 1$:
 return 1
 else:
 $a = F(n-1)$
 return $n \times a$

This function call is over.

$m \rightarrow 3$
x $\rightarrow 6$

$n \rightarrow 3$
a $\rightarrow 2$
return $\rightarrow 6$
Executing F(3)

\[
\begin{align*}
 m &= 3 \\
 x &= F(m) \\
 \text{print } x
\end{align*}
\]

Control passes to the script that asked for F(3)
Executing F(3)

\[
m = 3 \\
x = F(m) \\
print x
\]

Output: 6

All Done!
Overall Conclusions

Recursion is sometimes the simplest way to organize a computation.

It would be next to impossible to do the triangle tiling problem any other way.

On the other hand, factorial computation is easier via for-loop iteration.
Overall Conclusions

Infinite recursion (like infinite loops) can happen so careful reasoning is required.

Will we reach the “base case”?

Graphics examples: We will reach Level==0
Factorial: We will reach n==1