19. Lists of Objects

Topics:
Example: The class Disk
Boolean-Valued Methods
A Disk Intersection Problem
Example: The class CountyPop
Representing census-related data
Sorting a list of CountyPop objects



Visualizing a List of Points

L:
Point Point Point
3 X 1 9
Y 4 Y 2 b4 3

>>> P
>>> L

Point(3,4) ;Q = Point(1l,2) ;R = Point (9, 3)
[P,Q,R]



Visualizing a List of ints

>> L = [3,1,9]




A List of Objects

We would like to assemble a list whose
elements are not numbers or strings, but
references to objects.

For example, we have a hundred points in

the plane and a length-100 list of points
called ListOfPoints.

Let's compute the average distance to (0,0).



Working with a
List of Point Objects

Origin = Point (0,0)

d=20

for P in ListOfPoints:
d += P.Dist (Origin)

N = len(ListOfPoints)

AveDist = d/N

A lot of familiar stuff: Running sums. A for-loop
based on "in". The len function, Etc




A List of Random Points

def RandomCloud (Lx,Rx,Ly,Ry,n):
""" Returns a length-n list of points,
each chosen randomly from the rectangle
Lx<=x<=Rx, Ly<=y<=Ry.
PreC: Lx and Rx are floats with Lx<Rx,
Ly and Ry are floats with Ly<Ry, and
n is a positive int.
A =[]
for k in range(n):
P = RandomPoint (Lx,Rx,Ly, Ry)

A.append (P) The append method for lists
return A works for lists of objects.




Recall: Random Point

def RandomPoint (Lx,Rx,Ly,Ry) :
""" Returns a point that is randomly chosen
from the square Lx<=x<=Rx, Ly<=y<=Ry.

PreC: Lx and Rx are floats with Lx<Rx
Ly and Ry are floats with Ly<Ry

X = randu (Lx,Rx)

y = randu (Ly,Ry)

P = Point(x,vy)

return P

Use import to get access to classes defined in other modules




Visualizing a List of Points

L:
Point Point Point
3 X 1 9
Y 4 Y 2 b4 3

>>> P
>>> L

Point(3,4) ;Q = Point(1l,2) ;R = Point (9, 3)
[P,Q,R]



Visualizing a List of Points

L:
Point Point Point
3 X 1 9
Y 4 Y 2 b4 3

>>> P
>>> L

Point(3,4) ;Q = Point(1l,2) ;R = Point (9, 3)
[P,Q,R]

More accurate: A List of references to Point objects



Operations on a List of Points

Point Point Point
3 X 1 9
Y 4 Y 2 b4 3

>>> L[1].x = 100

Before



Operations on a List of Points

Point Point Point
3 x 100 X 9
Y 4 Y 2 b4 3

>>> L[1].x = 100

After



Operations on a List of Points

Point Point Point
3 X 1 9
Y 4 Y 2 b4 3

>>> L[1l] = Point(5,5)

Before



Operations on a List of Points

Point Point Point
3 X 5 9
Y 4 Y 5 b4 3

>>> L[1l] = Point(5,5)

After



Printing a List of Points

def printCloud(A):
""" Prints the points in A

PreC : A is a list of points.

mwiiw

for a in A:
print a

Synonym for the loop:

for k in range(len(A)):
print A[k]



We Now Showcase the Use
of Lists of Objects

Example 1. A Disk Intersection Problem

Example 2. A Census Data Problem



A Disk Intersection Problem



=

= | | | | | | | |
o W 00~ O U s W N O R NW RO 00w O

-10-9-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8 9 10

An Intersection Problem

m = 100 nDisplayed = 35 ratio = 0.35

We have a 10-by-10 target

for k in range(100):
Generate a random disk D
Display D if it does not

touch any of the
previously displayed disks

Assume all the disks have radius 1
and all inside the target.



A Class for Representing Disks

class Disk (object):
Attributes:
center: Point, the center of the disk
radius: float, the radius of the disk

def init (self,P,r):
""" Creates a Disk object with
center P and radius r
PreC: P is a Point,r is a pos float

self.center = P
self.radius = r

Note that an attribute can be an object. The center attribute is a Point




The RandomDisk Function

def RandomDisk (n) :

""" Returns a random radius-1 disk whose
center is inside the 2n-by-2n square
centered at (0,0).

Pre: n is a positive int

X = randu(-n,n)

y = randu(-n,n)

center = Point(x,y)

radius =1

return Disk (center,radius)




When Does a Pair of Disks
Intersect?

&

Answer: When the distance between their centers is less than the
sum of their radii.



The Method Intersects

def Intersects(self,other):
""" Returns True i1f self and other
intersect and False otherwise.
PreC: self and other are Disk objects
# The center-to-center distance:
cl = self.center
c2 = other.center
d = cl.Dist(c2)
# The sum of the two radii
radiusSum = self.radius + other.radius
TheyIntersect = (radiusSum >= d )
return TheyIntersect




=

= | | | | | | | |
o W 00~ O U s W N O R NW RO 00w O

-10-9-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8 9 10

An Intersection Problem

m = 100 nDisplayed = 35 ratio = 0.35

We have a 10-by-10 target

for k in range(100):
Generate a random disk D
Display D if it does not

touch any of the
previously displayed disks

Assume all the disks have radius 1
and all inside the target.



A Critical Function

def outsideAll (DO,L) :
""" Returns True if DO doesn't
intersect any of the disks in L

PreC: DO is a Disk and L is a
list of Disks
for D in L:
if D.Intersects (DO) :
return False
return True




Using outsideAll

# The list of displayed disks..
m = 10
DiskList = [] Starts out as the empty list
for k in range (100) :
D = RandomDisk (m-1)
if outsidelAll (D,DiskList) :
# D does not intersect any
# of the displayed disks
ShowDisk (D, MAGENTA)

Display D and append it to
Disklist. append (D) the list of displayed disks

nDisplayed = len (DiskList)




A Census Data Sorting
Problem



What Can We Sort?

We can sort a list of numbers from small to big
(or big to small).

We can sort a list of strings from "A-to-Z"
(or "Z-to-A").

We can sort a list of objects based on an
attribute if that attribute is either a
number or a string.



A Sorting Problem

Suppose we have

class Student (object):
Attributes:
Name: string, student’s name
GPA : float, student’s gpa

and that L is a list of Student objects...



A List of Student Objects

L:
Student Student Student
Name: ‘Gaga’ Name: ‘Cher’ Name: ‘Adele’
GPA: 3.31 GPA: 4.00 GPA: 2.95

L[O] L[1] L[2]



A List of Student Objects

We can sort this list

L: based on Name or
GPA.
Student Student Student
Name: ‘Gaga’ Name: ‘Cher’ Name: ‘Adele’
GPA: 3.31 GPA: 4.00 GPA: 2.95

L[O] L[1] L[2]



A List of Student Objects

Sorted by Name

L:
Student Student Student
Name: ‘Adele’ Name: ‘Cher’ Name: ‘Gaga’
GPA: 2.95 GPA: 4.00 GPA: 3.31

L[O] L[1] L[2]



A List of Student Objects

Sorted by GPA
L:
Student Student Student
Name: ‘Cher’ Name: ‘Gaga’ Name: ‘Adele’
GPA: 4.00 GPA: 3.31 GPA: 2.95

L[O] L[1] L[2]



How to Do We Do This?

You have to write a "getter” function that
extracts the value of the “key" attribute.

The name of this getter function is then
passed as an argument to the sort method.

We illustrate the technique on a problem that involves census data.



The Class County

class CountyPop (object) :
Attributes:
Name: the name of the county
State: the name of the state
Pop2010: the 2010 population
Pop2011: the 2011 population
Pop2012: the 2012 population
Pop2013: the 2013 population
Pop2014: the 2014 population

mwiiw

(string)
(string)
(int)
(int)
(1nt)
(int)
(1nt)




Setting Up the List of
CountyPop Objects

The file CensusData. csvhas these columns:

5 State Name

6 County Name

7 2010 county population
10 2011 county population
11~ 2012 county population
12 2013 county population
13 2014 county population




Setting Up the List of
CountyPop Objects

TheCounties = fileToStringlList ('CensusData.csv')
L = []
for ¢ 1in TheCounties:
v = c.split(',"')
c = CountyPop(v([6],v[5],int(v[7]),int(v[10]),
int ( ) ,int(v[12]) ,int(v[13]))
L.append (C)

The constructor sets up the Name, State,
Pop2010, Pop2011, , Pop2013, and
Pop2014 attributes




Let's Sort!

def getPop2014 (C):

This getter function

# C is a County Object grabsthe 2014
lation.
return C. P0p2 014 POpUiation
if name == main ' And here is how we

/ tellsorttouseit

L.sort (key=getPop2014 ,reverse=True)

] Printing the top ten
for k in range(lO) . countiesin the USAin

print 1, [k] , L [k] ] P0p2014 terms of population.




Top Ten in 2014

Los Angeles County, California
Cook County, Illinois

Harris County, Texas

Maricopa County, Arizona

San Diego County, California
Orange County, California
Miami-Dade County, Florida
Kings County, New York

Dallas County, Texas

Riverside County, California

10116705
5246456
4441370
4087191
3263431
3145515
2662874
2621793
2518638
2329271



