
17. Dictionaries

Topics:
 Basic dictionary manipulations
 How they are different from lists
 Dictionaries are Objects
 Application: Word frequency

A First Example

 D = {‘I’:1,’V’:5,’X’:10,’L’:50,’C’:100}

This dictionary has 5 items:

 ’I’:1

 ’V’:5

 ’X’:10

 ’L’:50

 ’C’:100

Keys and Values

 D = {‘I’:1,’V’:5,’X’:10,’L’:50,’C’:100}

An item has a key and a value.

For the item ’V’:5

 ‘V’ is the key
 5 is the value

Set-Up

 D = {‘I’:1,’V’:5,’X’:10,’L’:50,’C’:100}

To set up a small dictionary in this style you do
this:

1. Use a colon to separate a key from its value.

2. Separate items with a comma.

3. Enclose the whole thing with curly brackets.

The Methods .keys and .values

 >>> D =

{'I':1,'V':5,'X':10,'L':50,'C':100}

>>> D.keys()

['I', 'X', 'C', 'L', 'V']

>>> D.values()

[1, 10, 100, 50, 5]

Creates a list
of all the keys

Creates a list
of all the values

Deleting a Dictionary Item
with del

>>> D = {'I':1,'V':5,'X':10,'L':50,'C':100}

>>> del D[‘X’]

>>> D

{'I':1,'V':5,'L':50,'C':100}

Some Questions

How do you check if a dictionary has a key?

How do you access items in a dictionary?

How can you add an item to a dictionary?

How is a dictionary different from a list?

Are there type-related rules about keys?

Are there type-related rules about values?

Checking to see if a Dictionary
Has a Particular Key

>>> D = {'I':1,'V':5,'X':10}

>>> 'I' in D

True

>>> 'II' in D

False

>>>

Use in to check if a dictionary has a particular
key.

Checking if D has a particular
Value Using the values Method

>>> D = {'I':1,'V':5,'X':10}

>>> L = D.values()

>>> L

[1, 10, 5]

>>> 5 in L

True

Use “in” on
that list

Produce a list
of all the values
in D

Extracting a Value

>>> D = {'I':1,'V': 5,'X':10}

>>> a = D[‘V’]

>>> a

5

Use square bracket notation.

Use the key as you would an integer subscript.

Adding an Item to a Dictionary

>>> D = {'I':1,'V':5,'X':10}

>>> D['C'] = 100

>>> D

{'I': 1, 'X': 10, 'C': 100, 'V': 5}

Use assignment, e.g., D['C'] = 100

This “connects” the assigned value to the key
named within square brackets making the pair
an item, e.g., 'C': 100

Changing the Value of an Item

>>> D = {'I':1,'V':5,'X':10}

>>> D[‘V'] = 55

>>> D

{'I':1, 'X':10, 'V':55}

 D[‘V'] = 55 does not produce

 {'I':1, ‘V’:5, 'X':10, 'V':55}

Cannot have two items with the same key.

Dictionaries are Different
from Lists

>>> D = {'I':1,'V':5,'X':10,'L':50}

>>> D

{'I': 1, 'X': 10, 'L': 50, 'V': 5}

The items in a dictionary are not ordered as in a
list.

We see here that Python “shows” a different
ordering than how D was set up.

Dictionaries are Different
From Lists

>>> D = {'I': 1, 'X': 10, 'V': 5}

>>> D['X']

10

>>> L = [1,5,10]

>>> L[1]

5

Dictionary values are accessed by key not
subscript.

Dictionary

List

Dictionaries are Different
From Lists

>>> D = {'I': 1, ‘V': 5, ‘X': 10}

>>> D[2]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 2

Dictionary values are accessed by key not
subscript.

Python is complaining because 2 is not a key in the D

Lists and Dictionaries

 0 ---> 3

 1 ---> 5

 2 ---> 1

x --->

>>> x = []

>>> x.append(3)

>>> x.append(5)

>>> x.append(1)

‘I’ ---> 1

‘V’ ---> 5

‘X’ ---> 10

D --->

>>> D = {}

>>> D[‘I’] = 1

>>> D[‘V’] = 5

>>> D[‘X’] = 10

Lists involve mappings from ints to values
Dictionaries involve mappings from keys to values

Lists and Dictionaries

 0 ---> 3

 1 ---> 5

 2 ---> 1

x --->

>>> x = []

>>> x.append(3)

>>> x.append(5)

>>> x.append(1)

‘I’ ---> 1

‘V’ ---> 5

‘X’ ---> 10

D --->

>>> D = {}

>>> D[‘I’] = 1

>>> D[‘V’] = 5

>>> D[‘X’] = 10

You “add” to a list using the append method.
You add an item to a dictionary using a “new” key.

Lists and Dictionaries

 0 ---> 3

 1 ---> 5

 2 ---> 1

x --->

>>> L = []

>>> L.append(3)

>>> L.append(5)

>>> L.append(1)

‘I’ ---> 1

‘V’ ---> 5

‘X’ ---> 10

D --->

>>> D = {}

>>> D[‘I’] = 1

>>> D[‘V’] = 5

>>> D[‘X’] = 10

Empty List

Empty Dict

L = [] and L = list() are equivalent
D = { } and D = dict() are equivalent

Dictionaries & Lists
Access via the Square Bracket Notation:

 D[‘x’] L[2]

The len function can be applied to both:

>>> x = [10,20,30]

>>> len(x)

3

>>> D = {'a':10,'b':20,'c':30}

>>> len(D)

3

Dictionaries & Lists Are
Objects

You can have multiple
references to the
same object. This is
the idea of an alias.

>>> x = [10,20,30]

>>> y = x

>>> x[0]=100

>>> y

[100, 20, 30]

>>> D = {'a':10,'b':20,'c':30}

>>> E = D

>>> D['a'] = 100

>>> E

{'a': 100, 'c': 30, 'b': 20}

Dictionaries & Lists Are
Objects

It is possible to
make copies.

>>> x = [10,20,30]

>>> y = list(x)

>>> x[0] = 100

>>> y

[10, 20, 30]

>>> D = {'a':10,'b':20,'c':30}

>>> E = dict(D)

>>> D['a']=100

>>> E

{'a': 10, 'c': 30, 'b': 20}

For-Loops and Dictionaries

D = {‘I’:1,’V’:5,’X’:10,’L’:50}

for d in D:

 print d, D[d]

I 1

X 10

L 50

V 5

Again, dictionaries
are not ordered. So
extra steps would
need to be taken
here for things to
be printed in a certain order.

For-Loops and Dictionaries

D = {‘I’:1,’V’:5,’X’:10,’L’:50}

KeysOfD = D.keys()

KeysOfD.sort()

for d in KeysOfD:

 print d, D[d]

I 1

L 50

V 5

X 10

Pretty Printing a Short
Dictionary

>>> D = {'I':1,'V':5,'X':10,'L':50}

>>> str(D)

"{'I': 1, 'X': 10, 'L': 50, 'V': 5}"

Other Examples and Rules

D1 = {‘red’:[1,0,0],’cyan’:[0,1,1]}

D2 = {1:’one’, 2:’two’, 3:’three’}

D3 = {‘A’:’B’, 1:’C’, ‘D’:2}

- Keys must be strings or numbers
- Values can be anything
-Typically the items all “look alike”, but that
 is not necessary.

Some Common Errors

>>> D = {'I':1,'V':5,'X':10}

>>> D('I')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'dict' object is not callable

Square brackets, not parens!

Some Common Errors

>>> D = {'I': 1, 'X': 10, 'V': 5}

>>> x = D['L']

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

KeyError: 'L'

Trying to access a nonexistent item.

Note: D[‘L’] = 50 is legal and adds an item to D

A Dictionary Application

Given a text file F that encodes (for example)

an English novel, create a dictionary D that

specifies the frequency of each word that

appears in the file.

Word Frequency Dictionaries

The dictionary

 D = {‘sun’:34,‘moon’:5,’darcy’:56}

would “say” that there are

 34 occurrences of ‘sun’,

 5 occurrences of ‘moon’, and

 56 occurrences of ‘darcy’.

Strategy

First, read the file and create a list of strings,
one string for each line in the file:

 L = FileToList('PridePrej.txt')

Strategy

Second, assume the existence of a function
that can extract a list of words a string s and
use it like this:

 wList = stringToWordList(s)

Thus, we would get

 [‘the’,‘quick’,’brown’,’fox’]
from
 ‘The quick, brown fox!’

Strategy

Third, figure out how to update the word
frequency dictionary D:

 L = fileToStringList(‘PridePrej.txt’)
 D = {}

 for s in L:

 wList = stringToWordList(s)

 for w in wList:

 Update(w,D)

Updating a Dictionary

W = [‘cat’, mouse’,’dog’,’cat’,rabbit’]

‘cat’ ---> 20

‘dog’ ---> 10

D --->

 Look at each word in W and update D accordingly

Updating a Dictionary

W = [‘cat’, mouse’,’dog’,’cat’,rabbit’]

‘cat’ ---> 20

‘dog’ ---> 10

D --->

 Look at each word in W and update D accordingly

Before

Updating a Dictionary

W = [‘cat’, mouse’,’dog’,’cat’,rabbit’]

‘cat’ ---> 21

‘dog’ ---> 10

D --->

 Look at each word in W and update D accordingly

After

Updating a Dictionary

W = [‘cat’,‘mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 21

‘dog’ ---> 10

D --->

 Look at each word in W and update D accordingly

Before

Updating a Dictionary

W = [‘cat’,’mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 21

‘dog’ ---> 10

‘mouse’ ---> 1

D --->

 Look at each word in W and update D accordingly

After

Updating a Dictionary

W = [‘cat’,’mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 21

‘dog’ ---> 10

‘mouse’ ---> 1

D --->

 Look at each word in W and update D accordingly

Before

Updating a Dictionary

W = [‘cat’,’mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 21

‘dog’ ---> 11

‘mouse’ ---> 1

D --->

 Look at each word in W and update D accordingly

After

Updating a Dictionary

W = [‘cat’,’mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 21

‘dog’ ---> 11

‘mouse’ ---> 1

D --->

 Look at each word in W and update D accordingly

Before

Updating a Dictionary

W = [‘cat’,’mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 22

‘dog’ ---> 11

‘mouse’ ---> 1

D --->

 Look at each word in W and update D accordingly

After

Updating a Dictionary

W = [‘cat’,’mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 22

‘dog’ ---> 11

‘mouse’ ---> 1

D --->

 Look at each word in W and update D accordingly

Before

Updating a Dictionary

W = [‘cat’,’mouse’,’dog’,’cat’,’rabbit’]

‘cat’ ---> 22

‘dog’ ---> 11

‘mouse’ ---> 1

‘rabbit’ ---> 1

D --->

 Look at each word in W and update D accordingly

After

We Design Two Key
Functions To Do all the Work

stringToWordList(s)

Update(wList,D)

stringToWordList

def stringToWordList(s):

 t = ''

 for c in s.lower():

 alfa = 'abcdefghijklmnopqrstuvwxyz'

 if c in alfa:

 t = t + c

 else:

 t = t + ' '

 return t.split()

A word is made up
of lower case letters.

After the loop, words are
separated by blanks in
the string t.

Update(wList,D)

 def Update(wList,D):

 for w in wList:

 z = w.lower()

 if z in D:

 D[z]+=1

 else:

 D[z]=1

z is in the dictionary. So
increase its frequency count

z is not in the dictionary. So
add it in with frequency
initialized to 1

A Sample Computation
communicativeness

condescendingly

conscientiously

disappointments

discontentedness

disinterestedness

merchantibility

misrepresentation

recommendations

representations

superciliousness

superintendence

uncompanionable

unenforceability

These are all
the words in
Pride and Prejudice
that occur only
once and which
have 15 or more
Letters.

Method. Compute the complete
word frequency dictionary. Then
go through it printing a key if its
value is 1 and its length is 15
or greater.

