13A. Lists of Numbers

Topics:

Lists of numbers
List Methods:
Void vs Fruitful Methods
Setting up Lists
A Function that returns a list

We Have Seen Lists Before

Recall that the rgb encoding of a color involves a triplet of numbers:

$$
\begin{aligned}
& \text { MyColor }=[.3, .4, .5] \\
& \text { DrawDisk (} 0,0,1, \text { FillColor }=\text { MyColor })
\end{aligned}
$$

MyColor is a list.
A list of numbers is a way of assembling a sequence of numbers.

Terminology

$\mathrm{x}=[3.0,5.0,-1.0,0.0,3.14]$
How we talk about what is in a list:

5.0 is an item in the list \mathbf{x}.
 5.0 is an entry in the list \mathbf{x}.
 5.0 is an element in the list \mathbf{x}.
 5.0 is a value in the list \mathbf{x}.

Get used to the synonyms.

A List Has a Length

The following would assign the value of 5 to the variable n :

$$
\begin{aligned}
& \mathrm{x}=[3.0,5.0,-1.0,0.0,3.14] \\
& \mathrm{n}=\operatorname{len}(\mathrm{x})
\end{aligned}
$$

The Entries in a List are Accessed Using Subscripts

The following would assign the value of -1.0 to the variable a:

$$
\begin{aligned}
& \mathrm{x}=[3.0,5.0,-1.0,0.0,3.14] \\
& \mathrm{a}=\mathrm{x}[2]
\end{aligned}
$$

A List Can Be Sliced

This:

$$
\begin{aligned}
& \mathrm{x}=[10,40,50,30,20] \\
& \mathrm{y}=\mathrm{x}[1: 3] \\
& \mathrm{z}=\mathrm{x}[: 3] \\
& \mathrm{w}=\mathrm{x}[3:]
\end{aligned}
$$

Is same as:

$$
\begin{aligned}
& x=[10,40,50,30,20] \\
& y=[40,50] \\
& z=[10,40,50] \\
& w=[30,20]
\end{aligned}
$$

Lists are Similar to Strings

$$
\mathbf{s :} \begin{array}{|l|l|l|l|l|l|}
\hline & \mathbf{x}^{\prime} & ' L^{\prime} & ' 1^{\prime} & & \prime \\
\hline
\end{array}
$$

A string is a sequence of characters.
A list of numbers is a sequence of numbers.

Lists in Python

Now we consider lists of numbers:

$$
\begin{aligned}
& \mathrm{A}=[10,20,30] \\
& \mathrm{B}=[10.0,20.0,30.0] \\
& \mathrm{C}=[10,20.0,30]
\end{aligned}
$$

Soon we will consider lists of strings:

The items in a list usually have the same type, but that is not required.

$$
\text { Animals }=[\text { 'cat' }, \text { 'dog' }, \text { 'mouse' }]
$$

Later we will consider lists of objects.

The operations on lists that we are about to describe will be illustrated using lists of numbers. But they can be applied to any kind of list.

Visualizing Lists

Informal:

 \mathbf{x} :

Formal:
x ---->

A state diagram that shows

$$
\begin{array}{lll}
0 & --\gg & 3 \\
1 & ---> & 5 \\
2 & ---> & 1 \\
3 & ---> & 7
\end{array}
$$ the "map" from indices to elements.

Lists vs. Strings

There are some similarities, e.g., subscripts
But there is a huge difference:

1. Strings are immutable. They cannot be changed.
2. Lists are mutable. They can be change.

Exactly what does this mean?

Strings are Immutable

Before:

$s[2]=' x^{\prime}$

After:
TypeError: 'str' object does not support item assignment

You cannot change the value of a string

Lists ARE Mutable

$x[2]=100$

After:
x:

3	5	100	7

You can change the values in a list

Lists ARE Mutable

$x[1: 3]=[100,200]$

After
\mathbf{x} :

You can change the values in a list

List Methods

When these methods are applied to a list, they affect the list.

append
extend
insert
sort

Let's see what they do through examples...

List Methods: append

Before:
\mathbf{x} :

x. append (100)

After:

Use append when you want to "glue" an item on the end of a given list.

List Methods: extend

Before:
x :

$t=[100,200]$
x.extend (t)

After:

Use extend when you want to "glue" one list onto the end of another list.

List Methods: insert

$i=2$
$a=100$
x.insert(i,a)

After:

Use insert when you want to insert an item into the list. Items get "bumped" to the right if they are at or to the right of the specified insertion point.

List Methods: sort

x.sort()

After:

Use sort when you want to order the elements in a list from little to big.

List Methods: sort

x.sort(reverse=True)

An optional argument is being used to take care of this situation.

Use sort when you want to order the elements in a list from big to little.

Void Methods

When the methods
append extend insert sort
are applied to a list, they affect the list but they do not return anything like a number or string. They are called "void" methods.

Void methods return the value of None. This is Python's way of saying they do not return anything.

Void Methods

A clarifying example:

```
>>> x = [10,20,30]
>>> y = x.append(40)
>>> print x
[10, 20, 30, 40]
>>> print y
None
```

x.append(40) does something to x.

In particular, it appends an element to x

It returns None and that is assigned to y.

Void Methods/Functions

The graphics procedures DrawDisk, DrawRect, etc., are examples of void functions.
They also return the value None. But we were never tempted to do something like this:

$$
C=\operatorname{DrawDisk}(0,0,1)
$$

With lists, however, it is tempting to do something like this:

$$
\begin{aligned}
& \text { newValue }=10 \\
& \mathrm{y}=\mathrm{x} . \text { append (newValue) }
\end{aligned}
$$

So we have to be careful!

(Fruitful) List Methods

When these methods are applied to a list, they actually return something:
pop
count
Let's see what they do through examples...

The List Method pop

$i=2$
$m=x \cdot p o p(i)$

After:

Use pop when you want to remove an element and assign it to a variable.

The List Method count

Before:
x:

$m=x$. count (7)

After:

Use count when you want to compute the number of items in a list that have a value.

Two Built-In Functions that Can be Applied to Lists

len returns the length of a list
sum returns the sum of the elements in a list provided all the elements are numerical.

len and sum


```
m = len(x)
s = sum(x)
```

After

len and sum: Common errors

>>> $x=[10,20,30]$
>>> s = x.sum()
AttributeError: 'list' object has no attribute 'sum'
>>> $\mathrm{n}=\mathrm{x}$.len()
AttributeError: 'list' object has no attribute 'len'

Legal But Not What You Probably Expect

>>> $x=[10,20,30]$
$\ggg y=[11,21,31]$
>>> $z=x+y$
>>> print z
[10, 20, 30, 11, 21, 31]

Legal But Not What You Probably Expect

>>> $x=[10,20,30]$
>>> $y=3 * x$
>>>print y
[10, 20, 30, 10, 20, 30, 10, 20, 30]

Setting Up "Little" Lists

The examples so far have all been small.
When that is the case, the "square bracket" notation is just fine for setting up a list:

$$
\mathbf{x}=[10,40,50,30,20]
$$

Working with Big Lists

Setting up a big list requires a loop.
Looking for things in a big list requires a loop.

Let's consider some examples.

A Big List of Random Numbers

from random import randint as randi
x = []
$\mathrm{N}=1000000$
for k in range (N):
$r=r a n d i(1,6)$
x.append (r)
x starts out as an empty list and is built up through repeated appending.

Roll a dice one million times. Record the outcomes in a list.

This Does Not Work

```
from random import randint as randi
x = []
N = 1000000
for k in range(N):
    r = randi (1,6)
    x[k] = r
```

$\mathbf{x}[k]=r$
IndexError: list assignment index out of range
$\mathbf{x}[0]=\mathbf{r}$ does not work because \times is the empty list-it has no components

A List of Square Roots

```
from math import sqrt
x = []
N = 1000000
for k in range(N):
    s = sqrt(k)
    x.append(s)
```

Same idea. Create a list through repeated appending.

A Random Walk Example

from random import randint as randi
$\mathbf{x}=$ [0]
$\mathrm{k}=0$
\# $x[k]$ is robot's location after k hops while abs (x[k])<=10:
\# Flip a coin and hop right or left
$r=r a n d i(1,2)$
if $r==1$:

$$
\text { new_x }=x[k]+1
$$

else:

$$
\text { new_x }=x[k]-1
$$

$\mathrm{k}=\mathrm{k}+1$
x.append (new_x)

A Random Walk Example

Notice that x is initialized as a length-1 list. The robot starts at the origin.
from random import randint as randi
$\mathbf{x}=$ [0]
$\mathbf{k}=0$
\# $x[k]$ is robot's location after k hops while abs (x[k])<=10:
\# Flip a coin and hop right or left $r=$ randi $(1,2)$
if $r==1$:

$$
\text { new_x }=x[k]+1
$$

else:

$$
\text { new_x }=x[k]-1
$$

$\mathrm{k}=\mathrm{k}+1$
x.append (new_x)

Be Careful About Types

This is OK and synonymous with $\mathbf{x}=[0,10]$:
$\mathbf{x}=$ [0]
x.append(10)

This is not OK:
$x=0$
x. append (10)

AttributeError: 'int' object has no attribute 'append'

Be Careful About Types

>>> $x=0$
>>> type (x)
<type 'int'>
>>> $x=[0]$
>>> type (x)
<type 'list'>

Functions and Lists

Let's start with a function that returns a list.
In particular, a function that returns a list of random integers from a given interval.

Then we will use that function to estimate various probabilities when a pair of dice are rolled.

A List of Random Integers

from random import randint as randi
def randiList(L, R, n):
""" Returns a length-n list of random integers from interval [L,R] PreC: L, R, n ints with $L<=R$ and $n>=1$ " " "
$\mathbf{x}=$ []
for k in range (n):
$r=r a n d i(L, R)$
\mathbf{x}.append (r)
return x

Outcomes from Two Dice Rolls

Roll a pair of dice N times
Store the outcomes of each dice roll in a pair of length-N lists.

Then using those two lists, create a third list that is the sum of the outcomes in another list.

Outcomes from Two Dice Rolls

Example:

How to Do It

$\mathrm{N}=1000000$

D1 $=$ randiList $(1,6, N)$
D2 $=$ randiList $(1,6, N)$

D $=$ []
for k in range (N): TwoThrows = D1[k] $+\mathrm{D} 2[k]$
D. append (TwoThrows)

How It Works

At the start of the loop
D: []

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \quad \text { TwoThrows = D1[k] + D2 [k] } \\
& \quad \mathrm{D} . \text { append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{c|c|c}
\text { k --> } & 0 \\
\hline \text { N --> } & 4 \\
\hline
\end{array}
$$

TwoThrows = D1[0]+D2[0]

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \mathrm{D} . \text { append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{c|c|c}
\text { k --> } & 0 \\
\hline & \\
\text { n }--> & 4 \\
\hline
\end{array}
$$

D. append (5)

D: 5

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \quad \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \text { D.append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{c|c}
\text { k --> } & 1 \\
\hline \text { N --> } & 4 \\
\hline
\end{array}
$$

TwoThrows= D1[1]+D2[1]

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \mathrm{D} . \text { append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{lll}
\mathbf{k}--> & 1 \\
\mathrm{~N} & \\
\hline
\end{array}
$$

TwoThrows --> 4
D. append (4)

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \quad \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \text { D.append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{lll}
\mathrm{k} & --> & 2 \\
\mathrm{~N} & & \\
\hline
\end{array}
$$

TwoThrows --> 9

TwoThrows= D1[2]+D2[2]

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \mathrm{D} . \text { append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{lll}
\mathrm{k} & --> & 2 \\
\mathrm{~N} & \\
\hline
\end{array}
$$

TwoThrows --> 9
D. append (9)

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \quad \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \text { D. append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{c|c}
\text { k --> } & 3 \\
\hline \text { N --> } & 4 \\
\hline
\end{array}
$$

TwoThrows = D1[3]+D2[3]

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \quad \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \mathrm{D} . \text { append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{c|c|}
\hline k--> & 3 \\
\hline & \\
\text { N --> } & 4 \\
\hline & \\
\text { IwoThrows } & \\
\hline
\end{array}
$$

TwoThrows = D1[3]+D2[3]

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \mathrm{D} . \text { append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{lll}
\mathbf{k}--> & 3 \\
\mathrm{~N} & & \\
\hline
\end{array}
$$

TwoThrows --> 6
D. append (6)

$\mathrm{D}:$| 5 | 4 | 9 | 6 |
| :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \quad \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \text { D.append (TwoThrows) }
\end{aligned}
$$

How It Works

$$
\begin{array}{c|c}
\mathbf{k}--> & 4 \\
\hline \mathbf{N}--> & 4 \\
& \\
\text { TwoThrows } & \\
\hline
\end{array}
$$

All Done!

$$
\begin{aligned}
& \mathrm{N}=4 \\
& \mathrm{D}=[] \\
& \text { for } \mathrm{k} \text { in range }(\mathrm{N}): \\
& \quad \text { TwoThrows }=\mathrm{D} 1[\mathrm{k}]+\mathrm{D} 2[\mathrm{k}] \\
& \quad \mathrm{D} . \text { append (TwoThrows) }
\end{aligned}
$$

Tabulating Outcomes

We have simulated the rolling of a pair of dice N times.

The outcomes are recorded in the list D.

New problem:
How many 2's were there?
How many 3's were there?
How many 12's were there?

Tabulating Outcomes

count $=[0,0,0,0,0,0,0,0,0,0,0,0,0]$ for k in range (N):
$\mathrm{i}=\mathrm{D}[\mathrm{k}]$
count[i] = count[i]+1
count: \square
count[2] count[10]
keeps track of the number of 2's thrown keeps track of the numberof 10's thrown

Tabulating Outcomes

$$
\begin{aligned}
& \text { count }=[0,0,0,0,0,0,0,0,0,0,0,0,0] \\
& \text { for } k \text { in range }(N): \\
& \quad i=D[k] \\
& \quad \text { count }[i]=\text { count }[i]+1
\end{aligned}
$$

The variable i is assigned the outcome of the k-th 2 -die roll.

Tabulating Outcomes

$$
\begin{aligned}
& \text { count }=[0,0,0,0,0,0,0,0,0,0,0,0,0] \\
& \text { for } k \text { in range }(N): \\
& \quad i=D[k] \\
& \quad \text { count }[i]=\text { count }[i]+1
\end{aligned}
$$

Suppose:

$$
\text { i --> } 7
$$

$$
\begin{array}{lllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{array}
$$

count: | 0 | 0 | 3 | 1 | 5 | 8 | 7 | 2 | 1 | 6 | 9 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tabulating Outcomes

count $=[0,0,0,0,0,0,0,0,0,0,0,0,0]$
for k in range (N):
$\mathrm{i}=\mathrm{D}[\mathrm{k}]$
count[i] = count[i]+1

Suppose

$$
\text { i --> } 7
$$

then the assignment
count[i] = count[i]+1
effectively says
count[7] = count[7]+1

Tabulating Outcomes

count $=[0,0,0,0,0,0,0,0,0,0,0,0,0]$ for k in range (N):
$i=D[k]$
count[i] = count[i]+1

$$
i-->\quad 7
$$

Before:
count:

0	0	

After:
count:

0	0	3	1	5	8	7	3	1	6	9	2	1

Overall...

```
count = [0,0,0,0,0,0,0,0,0,0,0,0,0]
for k in range(N):
i = D[k]
count[i] = count[i]+1
```

A list of counters.

Sample Results, N = 10000

for k in range $(2,13)$: print k,count [k]

k	count [k]
2	293
3	629
4	820
5	1100
6	1399
7	1650
8	1321
9	1149
10	820
11	527
12	292

