
12. Logical Maneuvers

Topics:

 Loop-Body Returns

 Exceptions

 Assertions

 Type Checking

 Try-Except

Loop-Body Returns

Loop-Body Returns

Another way to terminate a loop.

Uses the fact that in a function, control
is passed back to the calling program
as soon as a return statement is encountered.

A Problem

Write a function

 MyFind(char,s)

that returns True if character char is in

string s and returns False otherwise.

.

Typical While-Loop Solution

When the loop ends, if k==len(s) is True,
 then we never found an instance of char.

def MyFind(char,s):

 k = 0

 while k<len(s) and char!=s[k]:

 k = k+1

 if k==len(s):

 return False

 else:

 return True

While-Loop Solution
with a Loop-Body Return

def MyFind(char,s):

 k = 0

 while k<len(s):

 if s[k]==char

 return True

 k = k+1

 return False

The function “jumps out of the loop” and returns True should
 it encounter an instance of char. If the loop runs to completion,
that means there is no instance of char.

For Loop Solution with a
Loop Body return

def MyFind(char,s):

 for k in range(len(s)):

 if s[k]==char:

 return True

 return False

The function “jumps out of the loop” and returns True should
 it encounter an instance of char. If the loop runs to completion,
that means there is no instance of char.

Another For Loop Solution with a
Loop Body return

def MyFind(char,s):

 for c in s:

 if c==char:

 return True

 return False

The function “jumps out of the loop” and returns True should
 it encounter an instance of char. If the loop runs to completion,
that means there is no instance of char.

Boolean Variables

Review: Variables and floats

It is possible to assign a float value to a variable:

 a = 1.3

 b = 10.1

 c = 3.7

 r = -b + math.sqrt(b*b-4*a*c))/(2*a)

Review: Variables and ints

It is possible to assign a string value to a
variable:

 m = ‘7’

 d = ’4’

 y = ‘1776’

 date = m + ‘/’ + d + ‘/’ + y

Review: Variables and Booleans

It is possible to assign a boolean value to a
variable:

 L = 1

 R = 2

 x = 1.3

 inside = (L<=x) and (x<=R)

Boolean Variables

As the course progresses you will be dealing
with logical situations that are increasingly
complicated.

Boolean variables are a handy way of keeping
track of what is going on.

Example: Leap Year

Gregorian Calendar Rule:

 Y is a leap year if it is a century year that
 is divisible by 400 or a non-century year
 that is divisible by 4.

Leap years: 1904, 2000, 2016

Not leap years: 1900, 2015

Example: Leap Year
Gregorian Calendar Rule:

 Y is a leap year if it is a century year that
 is divisible by 400 or a non-century year
 that is divisible by 4.

centuryYear = (Y%100==0)

if centuryYear:

 LY = (Y%400==0)

else:

 LY = (Y%4==0)

Y is a positive int.

LY is assigned the
value True if Y
is a leap year and
False otherwise.

Boolean Functions

Boolean Functions

A function can return a boolean value.

This can be a handy way of encapsulating
a complicated computation that culminates
in the production of a True value or a False
value.

Example: Intersecting Squares

Given two unit squares and a point, when is the
point inside both squares?

A unit square
has side length
one.

Point in a Unit Square

Must have:

 a <= x <= a+1

 b <= y <= b+1

(a,b) (a+1,b)

(a,b+1) (a+1,b+1)

(x,y)

xOK = (a<=x<=a+1)

yOK = (b<=y<=b+1)

Point in a Unit Square

def inS(a,b,x,y):

 “”” Returns True if (x,y) is inside

 the square with vertices (a,b),

 (a+1,b),(a,b+1), and (a+1,b+1).

 Otherwise, returns False.”””

 xOK = (a<=x<=a+1)

 yOK = (b<=y<=b+1)

 z = (xOK and yOK)

 return z

Using inS

z2 = inS(a1,b1,x,y) and inS(a2,b2,x,y)

z2 is True if and only if (x,y) is inside

 (i) the unit square with lower left vertex (a1,b1).

and also

 (ii) the unit square with lower left vertex (a2,b2).

Exceptions

Exceptions are errors that occur while your
program is running. The program stops running
when an exception is “raised.”

There are many types of exceptions.

Here are some examples…

ValueError

>>> t = int(‘12F’)

ValueError: invalid literal for

int() with base 10: '123F‘

In English:

 The int function does not accept a
string unless it encodes a number.

ImportError

>>> from superMath import sqrt

ImportError: No module named

superMath

In English:

 You cannot import stuff from a
nonexistent module or a module that is
not in the same working directory

ImportError

>>> >>> from math import SquareRoot

ImportError: cannot import name

SquareRoot

In English:

 the math module does not contain a
function named SquareRoot

NameError

>>> x = 3

>>> x = y+2

NameError: name 'y' is not defined

In English:

 The variable y does not exist.

TypeError

>>> x = 3

>>> s = 'abc'

>>> t = s/x

TypeError: unsupported operand

type(s) for /: 'str' and 'int'

In English:

 You cannot divide a string by a
number.

TypeError

>>> from math import sqrt

>>> x = sqrt('a')

TypeError: a float is required

In English:

 The square root function requires
a number.

ZeroDivisionError

>>> x = 3.0/0.0

ZeroDivisionError: float division by

zero

In English:

 Cannot divide by zero.

Assertions

They enable you to generate exceptions if
something is wrong.

A good way to check that your code is
doing what it should be doing.

A good way to focus on pre- and post- conditions
during the program development phase.

Assertions: How They Work

Syntax:
 assert B,S

B is a boolean expression .

S is a string.

If B is not true, then string S is printed
and an exception is “raised”.

Otherwise, nothing is done.

Checking Pre-, Post- Conditions

Typical:

 1. At the start of a function body, are
 the preconditions satisfied?
 2. At the end of the function body, does
 the value returned have the required
 properties?

Checking Pre-, Post Conditions

def sqrt(x):

 """ Returns an approximate

 square root of x in that

 |L*L-x| <= .001

 PreC: x is a positive number.

 """

Checking Pre-, Post conditions

def sqrt(x):

 assert x>0, 'The sqrt function
 requires a positive argument.'

 L = float(x)

 L = (L+x/L)/2

 L = (L+x/L)/2

 L = (L+x/L)/2

 L = (L+x/L)/2

 assert abs(L*L-x)<=.001,
 'Inaccurate Square Root'

 return L

Type Checking

Use assert and the function isinstance

How isinstance Works

It is a boolean-valued function with two arguments.

isinstance(x,int)

 True if variable x houses an int value
 Otherwise, False
isinstance(x,float)

 True if variable x houses a float value
 Otherwise, False
isinstance(x,str)

 True if variable x houses a string value
 Otherwise, False

Using isinstance

def sqrt(x):

 assert isinstance(x,float) or

 isinstance(x,int),

 print ‘x must be type int or

 float’

 :

Guard against the user passing a string to sqrt:

The Try-except
Construction

A graceful way to handle exceptions

Example:Try-Except
try:

 from AintNoMath import sqrt

 print 'AintNoMath.sqrt unavailable'

except ImportError:

 from math import sqrt

 print ‘AintNoMath.sqrt is not

 available‘

Code that uses sqrt...

a = 9; x = sqrt(a); print a,x

If the green code triggers an ImportError exception, then
the mauve code is executed and “sqrt” comes from the math
module. Otherwise sqrt comes from AintNoMath

Try-Except Construction
try:

except :

 Code that may generate

 a particular exception

 Code to execute if

 the particular

 exception is found

Name of Exception

break

break

Another way to terminate a loop

But it must be used with care for style reasons.

How break Works

As soon as a break statement is executed
inside a loop body, the loop ends and the
next statement after the body is executed.

Example

Compute the smallest N so that N!>10

fact = 1

for N in range(1,10000):

 fact = fact*N

 if fact>10:

 print N

 break

print fact

Loop range
big enough
to ensure
we will get
a large
enough
factorial

 Recall that 5! = 1 x 2 x 3 x 4 x5

Example

Print the smallest N so that N!>10

fact = 1

for N in range(1,10000):

 fact = fact*N

 if fact>10:

 print N

 break

print fact

Bad Style! Have to guess a suitable for-loop range.

While Loop Solution

Compute the smallest N so that N!>10

fact = 1

N = 1

fact = N!

while fact <=10:

 N = N+1

 fact = fact*N

print fact

A Good Example of break Usage

Consider the following problem.

A user enters an integer N from the keyboard

and Python is to display the value of N!

Recall: 5! = 1x2x3x4x5 = 120

Use math.factorial(N)

A Good Example of break Usage

Possible issue.

When we use math.factorial(N), the value
of N must be nonnegative.

What if the user inputs -5?

Would like to say, “try again”

A Good Example of break Usage

while True:

 N = raw_input(‘Enter pos int: ’)

 N = int(N)

 if N>=0

 break

 else:

 print ‘N must be nonnegative’

print math.factorial(N)

 Keep iterating until a nonnegative int is obtained

Another Issue

If the user doesn’t enter a string of
digits then the int statement will crash
the program:

 N = raw_input(‘Enter pos int: ’)
 N = int(N)

This brings up the challenge of “exceptions” and
“exception handling.”

A ValueError Exception

>>> int('12F')

ValueError: invalid literal for int()

 with base 10: '12F'

Exception a.k.a. run time error

Challenge

Is there a way we can keep soliciting

keyboard input until the user enters a

string of numbers?

Don’t want the program to terminate because

of a ValueError.

The Try-except
Construction

A graceful way to handle exceptions

Example Showing Try-Except
from math import factorial

while True:

 n = raw_input('Enter an integer: ')

 try:

 n = int(n)

 break

 except ValueError:

 print 'Invalid input. Try again.'

m = factorial(n)

print m

How It Works
from math import factorial

while True:

 n = raw_input('Enter an integer: ')

 try:

 n = int(n)

 break

 except ValueError:

 print 'Invalid input. Try again.'

print factorial(n

If int(n) in the green block triggers a ValueError
 exception, then control passes to the cyan block.
A message is printed and the loop continues

How It Works
from math import factorial

while True:

 n = raw_input('Enter an integer: ')

 try:

 n = int(n)

 break

 except ValueError:

 print 'Invalid input. Try again.'

print factorial(n)

If int(n) does not trigger a ValueError exception,
then the break is executed and the loop is over
and control passes to the print factorial(n) line

