11. Iteration: The while-Loop

Topics:

Open-Endedrepetition
the while statement
Example 1: The sqrt Problem
Example 2: The UpDown Sequence
Example 3. The Fibonacci Sequence

Open-Ended Iteration

So far, we have only addressed iterative problems in which we know (in advance) the required number of repetitions.

Not all iteration problems are like that.
Some iteration problems are open-ended.

```
Stir for 5 minutes vs Stir until fluffy.
```

For-Loop Solution

```
def sqrt(x):
```

 \(\mathbf{x}=\) float \((x)\)
 \(\mathrm{L}=\mathbf{x}\)
 \(\mathrm{W}=1\)
 for \(k\) in range (5):
 \(\mathrm{L}=(\mathrm{L}+\mathrm{W}) / 2\)
 \(\mathrm{W}=\mathrm{x} / \mathrm{L}\)
 return L
 The number of iterations is ''hardwired" into the implementation.

5 may not be enough-an accuracy issue

5 may be too big-efficiency issue

What we Really Want

def sqrt(x):
$\mathbf{x}=$ float (x)
$\mathrm{L}=\mathbf{x}$
$\mathrm{W}=1$
for k in range (5):
$\mathrm{L}=(\mathrm{L}+\mathrm{W}) / 2$
$\mathrm{W}=\mathbf{x} / \mathrm{L}$
return L

What we Really Want

But this:

while abs(L-W) /L > 10**-12
$\mathrm{L}=(\mathrm{L}+\mathrm{W}) / 2$
$\mathrm{W}=\mathrm{x} / \mathrm{L}$

What we Really Want
 while abs(L-W) /L > 10**-12
 $L=(L+W) / 2$
 $\mathrm{W}=\mathrm{x} / \mathrm{L}$

This says:
"Keep iterating as long as the discrepancy relative to L is bigger than 10** $(-12)^{\prime \prime}$

Template for doing something an Indefinite number of times

\# Initializations

while not-stopping condition :

Example 2

The "Up/Down" Sequence

$$
\begin{aligned}
& \text { What we Really Want } \\
& \qquad \begin{array}{c}
\text { while abs }(\mathrm{L}-\mathrm{W}) / \mathrm{L}>10 * *-12 \\
\mathrm{~L}=(\mathrm{L}+\mathrm{W}) / 2 \\
\mathrm{w}=\mathrm{x} / \mathrm{L}
\end{array}
\end{aligned}
$$

When the loop terminates, the discrepancy relative to L will be less than $10^{* *}(-12)$

The Up/Down Sequence Problem

Pick a random whole number between one and a million. Call the number n and repeat this process until $n==1$:
if n is even, replace n by $n / 2$. if n is odd, replace n by $3 n+1$

The Up/Down Sequence Problem

The Central Repetition

```
if m%2 == 0:
    m = m/2
else:
    m = 3*m+1
```

Note cycling once $m=1$:
$1,4,2,1,4,2,1,4,2,1,4,2,1, \ldots$

Shuts Down When $m==1$

```
n = input(`m = `)
m = n
nSteps = 0
while m > 1:
    if m% 2==0:
            m = m/2
    else:
            m = 3*m + 1
    nSteps = nSteps+1
print n,nSteps,m
                                keeps track
                                of the
                                number
                                of steps
```

Avoiding Infinite Loops

```
nSteps = 0
```

maxSteps $=200$
while $m>1$ and n Steps<maxSteps:
if $m \% 2==0$:
$\mathrm{m}=\mathrm{m} / 2$
else:
$\mathrm{m}=3 *_{\mathrm{m}}+1$
nSteps $=\mathrm{nStep}+1$

Example 3

Fibonacci Numbers and the Golden Ratio

Fibonacci Numbers and the Golden Ratio

Here are the first 12 Fibonacci Numbers
$0,1,1,2,3,5,8,13,21,34,55,89,144$

The Fibonacci ratios $1 / 1,2 / 1,3 / 2,5 / 3,8 / 5$ get closer and closer to the "golden ratio"

$$
\text { phi }=(1+\operatorname{sqrt}(5)) / 2
$$

Fibonacci Ratios 2/1, 3/2, 5/3, 8/5

Generating Fibonacci Numbers

Here are the first 12 Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$

Starting here, each one is the sum of its two predecessors

Generating Fibonacci Numbers$0,1,1,2,3,5,8,13,21,34,55,89,144$	
$\begin{array}{ll\|l\|} \mathrm{k} & --> & 0 \\ \mathrm{x} & --> & 0 \\ y & -->1 \\ z & --> & 1 \\ \hline \end{array}$	$\begin{aligned} & x=0 \\ & y=1 \\ & \text { for } \begin{array}{l} \text { in range (10) : } \\ \qquad \begin{array}{l} z=x+y \\ x=y \\ y=z \end{array} \\ \hline \end{array} \end{aligned}$

Generating Fibonacci Numbers
$0,1,1,2,3,5,8,13,21,34,55,89,144$

k -->	0
x -->	1
y -->	1
z -->	1

$$
\begin{aligned}
& x=0 \\
& y=1 \\
& \text { for } k \text { in range }(10): \\
& \quad z=x+y \\
& \quad x=y \\
& y=z
\end{aligned}
$$

Generating Fibonacci Numbers

$$
\begin{aligned}
& 0,1,1,2,3,5,8,13,21,34,55,89,144 \\
& \begin{array}{ll|l|}
\mathbf{k} & --\lambda & 1 \\
x & --\lambda & 1 \\
y & --\lambda & 1 \\
z & --\lambda & 1 \\
\hline
\end{array} \\
& \begin{array}{l}
x=0 \\
y=1 \\
\text { for } k \text { in range (10): } \\
\qquad \begin{array}{l}
z=x+y \\
x=y \\
y=z
\end{array}
\end{array}
\end{aligned}
$$

Generating Fibonacci Numbers

Generating Fibonacci Numbers

$0,1,1,2,3,5,8,13,21,34,55,89,144$
\uparrow

k	$-->$	2
x	$-->$	2
y	$-->$	3
z	$-->$	3

$\mathbf{x}=0$
$\mathrm{k}-\mathrm{-}=2$
$y=1$
for k in range (10):
$\mathrm{z}=\mathrm{x}+\mathrm{y}$
$\mathrm{x}=\mathrm{y}$
$\mathrm{y}=\mathrm{z}$
$z-->3$

Generating Fibonacci Numbers

Generating Fibonacci Numbers

Generating Fibonacci Numbers

$x=0$
print x
$y=1$
print y
for k in range (6) :
$\quad z=x+y$
$\quad x=y$
$\quad y=z$
\quad print z

Generating Fibonacci Numbers

```
x = 0
print x
y = 1
print y
for k in range (6):
    z = x+y
    x = y
    y = z
    print z
```

$\mathrm{x}=0$
print x
$y=1$
print y $\mathrm{k}=0$ while $k<6$:
$z=x+y$
$\mathbf{x}=\mathrm{y}$
$y=z$
print z
k $=\mathbf{k}+1$

Print First Fibonacci Number $>=1000000$

```
x = 0
y = 1
z = x + y
while y < 1000000:
    x = y
    y = z
    z = x + y
print y
```


Print First Fibonacci Number $>=1000000$

past $=0$
current $=1$
next $=$ past + current
while current < 1000000:
past $=$ current
current $=$ next
next $=$ past + current
print current

Reasoning. When the while loop terminates, it will be the first time that current>= 1000000 is true. By print out current we see the first fib >=million

Print First Fibonacci Number $>=1000000$

 1346269

Print Largest Fibonacci Number < 1000000

```
past = 0
current = 1
next = past + current
while next <= 1000000:
    past = current
    current = next
    next = past + current
print current
```

832040

Fibonacci Ratios

next>= 1000000 is true. Current has to be <1000000. And it is the largest fib
with this property

Print Largest Fibonacci

Number < 1000000

```
past = 0
```

past = 0
current = 1
current = 1
next = past + current
next = past + current
while next < 1000000:
while next < 1000000:
past = current
past = current
current = next
current = next
next = past + current
next = past + current
print current

```
print current
```

```
past = 0
```

past = 0
current = 1
current = 1
next = past + current
next = past + current
while current < 1000000:
while current < 1000000:
past = current
past = current
current = next
current = next
next = past + current
next = past + current
print current

```
print current
```

Print Largest Fibonacci
Number < 1000000
past $=0$ current $=1$ next $=$ past + current while next <= 1000000 past $=$ current current $=$ next next $=$ past + current print current
832040

```
past = 0
```

past = 0
current = 1
current = 1
next = past + current
next = past + current
while next <= 1000000:
while next <= 1000000:
past = current
past = current
current = next
current = next
next = past + current
next = past + current
print next/current

```
        print next/current
```

-1.500000000000
1.625000000000
1.615384615385
1. 619047619048
1.617647058824
1. 618181818182
1. 617977528090
1.618055555556
1. 618025751073
1.618037135279
Heading towards the
Golden ratio $=(1+\operatorname{sqrt}(5)) / 2$

Fibonacci Ratios

```
past = 0
current = 1
next = past + current
k = 1
phi = (1+math.sqrt (5))/2
while abs(next/current - phi) > 10**-9
    past = current
    current = next
    next = past + current
    k = k+1
print k,next/current
```

$23 \quad 1.618033988749$

Most Pleasing Rectangle

1

