11. Iteration: The while-Loop

Topics:
- Open-Ended repetition
- the while statement
- Example 1: The sqrt Problem
- Example 2: The UpDown Sequence
- Example 3. The Fibonacci Sequence
Open-Ended Iteration

So far, we have only addressed iterative problems in which we know (in advance) the required number of repetitions.

Not all iteration problems are like that.

Some iteration problems are open-ended.

Stir for 5 minutes vs Stir until fluffy.
Examples

Keep tossing a coin until the number of heads and the number of tails differs by 10.

Compute the square root of 2:

$L = 2; \ W = 1$

Repeat this until $|L-W| \leq 0.000001$:

$L = (L + W)/2$

$W = x/L$

In both cases, we do not know the number of iterations that will be required.
The While Loop

We introduce an alternative to the for-loop called the while-loop.

The while loop is more flexible and is essential for ``open ended'' iteration.
How Does a While-Loop Work?

A simple warm-up example:

Sum the first 5 whole numbers and display the summation process.
Two Solutions

\begin{align*}
k &= 0 \\
s &= 0 \\
\text{while } k < 5: & \\
 k &= k + 1 \\
 s &= s + k \\
\text{print } k, s
\end{align*}

\begin{align*}
s &= 0 \\
\text{for } k \text{ in range}(1, 6): & \\
 s &= s + k \\
\text{print } k, s
\end{align*}
The While-Loop Solution

```python
k = 0
s = 0
while k < 5:
    k = k + 1
    s = s + k
    print k,s
```

1 1
2 3
3 6
4 10
5 15

Observation: `k` is used for counting, `s` is used for the running sum, and the `while` is used to control the repetition of the indented code.
The Solution

\[k = 0 \]
\[s = 0 \]

while \(k < 5 \):

\[k = k + 1 \]
\[s = s + k \]

print \(k, s \)

We call this the “loop body”
Trace the Execution

At the start, k and s are initialized
Trace the Execution

\[
k = 0 \\
s = 0 \\
\text{while } k < 5: \\
\quad k = k + 1 \\
\quad s = s + k \\
\quad \text{print } k, s
\]

Is the boolean condition true?
Trace the Execution

\[k = 0 \]
\[s = 0 \]
\[\text{while } k < 5: \]
\[\quad k = k + 1 \]
\[\quad s = s + k \]
\[\quad \text{print } k, s \]

Yes, so execute the loop body
Trace the Execution

```python
k = 0
s = 0
while k < 5:
    k = k + 1
    s = s + k
    print k, s
```

```
k -> 1
s -> 1
1 1
```
Trace the Execution

k = 0
s = 0
while k < 5:
 k = k + 1
 s = s + k
 print k, s

Is the boolean condition true?
Trace the Execution

k = 0
s = 0

while k < 5:
 k = k + 1
 s = s + k
 print k, s

k -> 1
s -> 1

Yes, so execute the loop body

1 1
Trace the Execution

\[
k = 0 \\
s = 0 \\
\text{while } k < 5: \\
\quad k = k + 1 \\
\quad s = s + k \\
\quad \text{print } k, s
\]
Trace the Execution

```python
k = 0
s = 0
while k < 5:
    k = k + 1
    s = s + k
    print(k, s)
```

Is the boolean condition true?
Trace the Execution

\[k = 0 \]
\[s = 0 \]

while \(k < 5 \):

\[k = k + 1 \]
\[s = s + k \]

print \(k, s \)

Yes, so execute the loop body

\[k \to 2 \]
\[s \to 3 \]

1 1
2 3
Trace the Execution

$k = 0$
$s = 0$

while $k < 5$:

- $k = k + 1$
- $s = s + k$
- print k, s

$k -> 3$
$s -> 6$

1 1
2 3
3 6
Trace the Execution

\[
k = 0 \\
s = 0 \\
\text{while } k < 5: \\
\quad k = k + 1 \\
\quad s = s + k \\
\quad \text{print } k, s
\]

Is the boolean condition true?

\[
\begin{array}{c}
k \\
3
\end{array}
\quad \begin{array}{c}
s \\
6
\end{array}
\quad \begin{array}{ccc}
1 & 1 \\
2 & 3 \\
3 & 6
\end{array}
\]
Trace the Execution

k = 0
s = 0

while k < 5:
 k = k + 1
 s = s + k
 print k, s

Yes, so execute the loop body

k -> 3
s -> 6

1 1
2 3
3 6
Trace the Execution

\[
\begin{align*}
k &= 0 \\
s &= 0 \\
\text{while } k < 5: & \\
& \quad k = k + 1 \\
& \quad s = s + k \\
& \quad \text{print } k, s
\end{align*}
\]
Trace the Execution

\[
\begin{align*}
k &= 0 \\
s &= 0 \\
\text{while } k < 5: \\
&\quad k = k + 1 \\
&\quad s = s + k \\
&\quad \text{print } k, s
\end{align*}
\]

Is the boolean condition true?
Trace the Execution

\[
\begin{align*}
k & = 0 \\
s & = 0 \\
\text{while } k < 5: \quad & \\
\quad & k = k + 1 \\
\quad & s = s + k \\
\quad & \text{print } k, s
\end{align*}
\]

Yes, so execute the loop body

\[\begin{array}{cccc}
k & \rightarrow & 4 \\
s & \rightarrow & 10 \\
1 & 1 \\
2 & 3 \\
3 & 6 \\
4 & 10
\end{array}\]
Trace the Execution

```
k = 0
s = 0
while k < 5:
    k = k + 1
    s = s + k
    print k, s
```
k = 0
s = 0
while k < 5:
 k = k + 1
 s = s + k
 print k, s

Is the boolean condition true?
NO! The loop is over.
The While-Loop Mechanism

The Boolean expression is checked. If it is true, then the loop body is executed. The process is repeated until the Boolean expression is false. At that point the iteration terminates.
The Broader Context

Code that comes before the loop

while A Boolean Expression :

The Loop Body

Code that comes after the loop

Every variable involved in the Boolean expression must be initialized.
The Broader Context

while A Boolean Expression :

The Loop Body

Code that comes before the loop

Code that comes after the loop

After the loop terminates the next statement after the loop is executed.
The Broader Context

Code that comes before the loop

while A Boolean Expression :

The Loop Body

Code that comes after the loop

Indentation defines the loop body
Back to Our Example

\[k = 0 \]
\[s = 0 \]
\[\textbf{while } k < 5: \]
\[\quad k = k + 1 \]
\[\quad s = s + k \]
\[\quad \text{print } k, s \]

1 1
2 3
3 6
4 10
5 15

Let's move the print statement outside the loop body
Back to Our Example

\[
\begin{align*}
k &= 0 \\
s &= 0 \\
\text{while } k < 5: & \\
& \quad k = k + 1 \\
& \quad s = s + k \\
\text{print } k, s
\end{align*}
\]

Only the final value of \(k \) and \(s \) are reported.
A Modified Problem

Print the smallest k so that the sum of the first k whole numbers is greater than 50.

The answer is 10 since

\[1+2+3+4+5+6+7+8+9 = 45\]

and

\[1+2+3+4+5+6+7+8+9+10 = 55\]
"Discovering" When to Quit

```python
k = 0
s = 0
while s < 50:
    k = k + 1
    s = s + k
print k, s
```

While loops can handle iterative situations even if we do not know the required number of repetitions.
"Discovering" When to Quit

```python
k = 0
s = 0
while s < 50:
    k = k + 1
    s = s + k
print k, s
```

Suppose this is the situation:

- \(k \rightarrow 9 \)
- \(s \rightarrow 45 \)
"Discovering" When to Quit

```python
k = 0
s = 0
while s < 50:
    k = k + 1
    s = s + k
print k, s
```

The boolean condition says "OK"

- \(k \rightarrow 9 \)
- \(s \rightarrow 45 \)
“Discovering” When to Quit

```
k = 0
s = 0
while s < 50:
    k = k + 1
    s = s + k
print k, s
```

\begin{align*}
k & \rightarrow 10 \\
n & \rightarrow 55
\end{align*}
"Discovering" When to Quit

\[\text{k} = 0 \]
\[\text{s} = 0 \]
\[\text{while } \text{s} < 50: \]
\[\text{k} = \text{k} + 1 \]
\[\text{s} = \text{s} + \text{k} \]
\[\text{print k, s} \]

The boolean condition now says "stop"

\[\text{k} \rightarrow 10 \]
\[\text{s} \rightarrow 55 \]
k = 0
s = 0
while s < 50:
 k = k + 1
 s = s + k
print k, s

Control passes to the next statement after the end of the loop body
k = 0
s = 0
while s < 50:
 # s is the sum 1+ ... + k
 k = k + 1
 s = s + k
print k,s

The “property” that s is the sum of the first k whole numbers is invariant throughout the iteration. Defining variables in this fashion promotes correctness.
Example 1

The Square Root Problem (Again!)
def sqrt(x):
 x = float(x)
 L = x
 W = 1
 for k in range(5):
 L = (L + W)/2
 W = x/L
 return L

The number of iterations is ``hardwired'' into the implementation.

5 may not be enough--an accuracy issue

5 may be too big--efficiency issue
What we Really Want

def sqrt(x):
 x = float(x)
 L = x
 W = 1
 for k in range(5):
 L = (L + W)/2
 W = x/L
 return L

Iterate until L and W are really close.
What we Really Want

Not this:

```
for k in range(5):
    L = (L + W)/2
    W = x/L
```

But this:

```
while abs(L-W)/L > 10**-12
    L = (L + W)/2
    W = x/L
```
What we Really Want

while \(\frac{|L-W|}{L} > 10^{-12} \)

\[L = \frac{L + W}{2} \]

\[W = \frac{x}{L} \]

This says:

“Keep iterating as long as the discrepancy relative to \(L \) is bigger than \(10^{-12} \)”
What we Really Want

while abs(L-W)/L > 10**-12
 L = (L + W)/2
 W = x/L

When the loop terminates, the discrepancy relative to L will be less than 10**(-12)
Template for doing something an Indefinite number of times

Initializations

while not-stopping condition :

do something
A Common Mistake

while abs(L-W)/L < 10**-12
L = (L + W)/2
W = x/L

Forgetting that we want a "NOT stopping" condition
Example 2

The “Up/Down” Sequence
The Up/Down Sequence Problem

Pick a random whole number between one and a million. Call the number n and repeat this process until n == 1:

if n is even, replace n by n/2.
if n is odd, replace n by 3n+1
The Up/Down Sequence Problem

<table>
<thead>
<tr>
<th>99</th>
<th>741</th>
<th>157</th>
<th>20</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>2224</td>
<td>472</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>149</td>
<td>1112</td>
<td>136</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>438</td>
<td>556</td>
<td>68</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>219</td>
<td>278</td>
<td>34</td>
<td>8</td>
<td>etc</td>
</tr>
<tr>
<td>658</td>
<td>139</td>
<td>17</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>329</td>
<td>418</td>
<td>52</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>988</td>
<td>209</td>
<td>26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>628</td>
<td>13</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>314</td>
<td>40</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
The Central Repetition

```python
if m%2 == 0:
    m = m/2
else:
    m = 3*m+1
```

Note cycling once m == 1:

1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, ...
n = input('m = ')
m = n
nSteps = 0
while m > 1:
 if m%2==0:
 m = m/2
 else:
 m = 3*m + 1
 nSteps = nSteps+1
print n,nSteps,m
Avoiding Infinite Loops

nSteps = 0
maxSteps = 200

while m > 1 and nSteps<maxSteps:
 if m%2==0:
 m = m/2
 else:
 m = 3*m + 1
 nSteps = nStep+1
Example 3

Fibonacci Numbers and the Golden Ratio
Fibonacci Numbers and the Golden Ratio

Here are the first 12 Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

The Fibonacci ratios 1/1, 2/1, 3/2, 5/3, 8/5 get closer and closer to the “golden ratio”

\[\phi = \frac{1 + \sqrt{5}}{2} \]
Fibonacci Ratios 2/1, 3/2, 5/3, 8/5
Generating Fibonacci Numbers

Here are the first 12 Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

Starting here, each one is the sum of its two predecessors
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

\[
x = 0 \\
y = 1 \\
\text{for } k \text{ in range}(10): \\
z = x + y \\
x = y \\
y = z
\]
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

```
x = 0
y = 1
for k in range(10):
    z = x + y
    x = y
    y = z
```
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

\[
\begin{align*}
x &= 0 \\
y &= 1 \\
\text{for } k \text{ in range}(10): \\
z &= x + y \\
x &= y \\
y &= z
\end{align*}
\]
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

\[\begin{align*}
 k & \rightarrow 1 \\
 x & \rightarrow 1 \\
 y & \rightarrow 2 \\
 z & \rightarrow 2 \\
\end{align*} \]

```python
x = 0
y = 1
for k in range(10):
    z = x+y
    x = y
    y = z
```
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x = 0
y = 1
for k in range(10):
 z = x + y
 x = y
 y = z
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

$x = 0$
y = 1
for k in range(10):
 $z = x + y$
 $x = y$
 $y = z$
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

\[x = 0\]
\[y = 1\]
\[
\text{for } k \text{ in range}(10):
\]
\[z = x+y\]
\[x = y\]
\[y = z\]

\[k \rightarrow 3\]
\[x \rightarrow 2\]
\[y \rightarrow 3\]
\[z \rightarrow 3\]
Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x = 0
y = 1
for k in range(10):
 z = x+y
 x = y
 y = z

k --> 3
x --> 3
y --> 5
z --> 5
Generating Fibonacci Numbers

```python
x = 0
print x
y = 1
print y
for k in range(6):
    z = x+y
    x = y
    y = z
    print z
```

0
1
1
2
3
5
8
13
Generating Fibonacci Numbers

```python
x = 0
print x
y = 1
print y
for k in range(6):
    z = x+y
    x = y
    y = z
    print z
```

```python
x = 0
print x
y = 1
print y
k = 0
while k<6:
    z = x+y
    x = y
    y = z
    print z
    k = k+1
```
Print First Fibonacci Number
\[\geq 1000000 \]

\[
x = 0 \\
y = 1 \\
z = x + y \\
\text{while } y < 1000000: \\
 x = y \\
 y = z \\
 z = x + y \\
\text{print } y
\]
Print First Fibonacci Number
\[\geq 1000000\]

```
past = 0
current = 1
next = past + current
while current < 1000000:
    past = current
    current = next
    next = past + current
print current
```

1346269
Print First Fibonacci Number
\[\geq 1000000 \]

\[
past = 0 \\
current = 1 \\
next = past + current \\
while current < 1000000:
 past = current \\
 current = next \\
 next = past + current \\
print current
\]

Reasoning. When the while loop terminates, it will be the first time that \(current \geq 1000000 \) is true. By print out current we see the first fib \(\geq \text{million} \).
Print Largest Fibonacci Number < 1000000

```python
past = 0
current = 1
next = past + current
while next <= 1000000:
    past = current
    current = next
    next = past + current
print current
```

832040
Print Largest Fibonacci Number < 1000000

\[
\begin{align*}
\text{past} &= 0 \\
\text{current} &= 1 \\
\text{next} &= \text{past} + \text{current} \\
\text{while next} &< 1000000: \\
&\quad \text{past} = \text{current} \\
&\quad \text{current} = \text{next} \\
&\quad \text{next} = \text{past} + \text{current} \\
\text{print current}
\end{align*}
\]

Reasoning. When the while loop terminates, it will be the first time that \(\text{next} \geq 1000000 \) is true. Current has to be \(< 1000000 \). And it is the largest fib with this property.
Fibonacci Ratios

```python
past = 0
current = 1
next = past + current
while next <= 1000000:
    past = current
    current = next
    next = past + current
print next/current
```

Heading towards the Golden ratio = \((1+\sqrt{5})/2\)
Fibonacci Ratios

```
past = 0
current = 1
next = past + current
k = 1
phi = (1+math.sqrt(5))/2
while abs(next/current - phi) > 10**-9
    past = current
    current = next
    next = past + current
    k = k+1
print k, next/current
```

23 1.618033988749
Most Pleasing Rectangle

\[\frac{1 + \sqrt{5}}{2} \]