
11. Iteration: The while-Loop

 Topics:

 Open-Ended repetition

 the while statement

 Example 1: The sqrt Problem

 Example 2: The UpDown Sequence

 Example 3. The Fibonacci Sequence

Open-Ended Iteration

So far, we have only addressed iterative

problems in which we know (in advance) the

required number of repetitions.

Not all iteration problems are like that.

Some iteration problems are open-ended.

Stir for 5 minutes vs Stir until fluffy.

Example 1

The Square Root Problem
(Again!)

For-Loop Solution

def sqrt(x):

 x = float(x)

 L = x

 W = 1

 for k in range(5):

 L = (L + W)/2

 W = x/L

 return L

The number of iterations
is ``hardwired’’ into the
implementation.

5 may not be enough--
an accuracy issue

5 may be too big--
efficiency issue

What we Really Want

def sqrt(x):

 x = float(x)

 L = x

 W = 1

 for k in range(5):

 L = (L + W)/2

 W = x/L

 return L

Iterate until L
and W are really
close.

What we Really Want

for k in range(5):

 L = (L + W)/2

 W = x/L

while abs(L-W)/L > 10**-12

 L = (L + W)/2

 W = x/L

Not this:

But this:

What we Really Want

while abs(L-W)/L > 10**-12

 L = (L + W)/2

 W = x/L

This says:

“Keep iterating as long as the discrepancy
relative to L is bigger than 10**(-12)”

What we Really Want

while abs(L-W)/L > 10**-12

 L = (L + W)/2

 W = x/L

When the loop terminates, the discrepancy
relative to L will be less than 10**(-12)

Template for doing something
an Indefinite number of times

Initializations

while not-stopping condition :

 # do something

A Common Mistake

while abs(L-W)/L < 10**-12

 L = (L + W)/2

 W = x/L

Forgetting that we want a
 “NOT stopping” condition

Example 2

The “Up/Down” Sequence

The Up/Down Sequence
Problem

Pick a random whole number between
one and a million. Call the number n and
repeat this process until n ==1:

 if n is even, replace n by n/2.
 if n is odd, replace n by 3n+1

The Up/Down Sequence
Problem

 99 741 157 20 1

298 2224 472 10 4

149 1112 136 5 2

438 556 68 16 1

219 278 34 8 etc

658 139 17 4

329 418 52 2

988 209 26 1

494 628 13 4

247 314 40 2

The Central Repetition

if m%2 == 0:

 m = m/2

else:

 m = 3*m+1

Note cycling once m == 1:
 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

Shuts Down When m==1
n = input(‘m = ‘)

m = n

nSteps = 0

while m > 1:

 if m%2==0:

 m = m/2

 else:

 m = 3*m + 1

 nSteps = nSteps+1

print n,nSteps,m

nSteps
keeps track
of the
number
of steps

Avoiding Infinite Loops

nSteps = 0

maxSteps = 200

while m > 1 and nSteps<maxSteps:

 if m%2==0:

 m = m/2

 else:

 m = 3*m + 1

 nSteps = nStep+1

Example 3

Fibonacci Numbers and
the Golden Ratio

Fibonacci Numbers and the
Golden Ratio

Here are the first 12 Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

The Fibonacci ratios 1/1, 2/1, 3/2, 5/3, 8/5

get closer and closer to the “golden ratio”

 phi = (1 + sqrt(5))/2

Fibonacci Ratios 2/1, 3/2, 5/3, 8/5

 5

 2

 2

 3

 3

 1

 5

 8

Generating Fibonacci Numbers

Here are the first 12 Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

 Starting here, each one is the sum

 of its two predecessors

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 0

y --> 1

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z

 z -->

k --> 0

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 1

y --> 1

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z

 z --> 1

k --> 0

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 1

y --> 1

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z

 z --> 1

k --> 1

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 1

y --> 2

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z z --> 2

k --> 1

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 1

y --> 2

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z

 z --> 2

k --> 2

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 2

y --> 3

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z

 z --> 3

k --> 2

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 2

y --> 3

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z

 z --> 3

k --> 3

Generating Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

x --> 3

y --> 5

x = 0

y = 1

for k in range(10):

 z = x+y

 x = y

 y = z

 z --> 5

k --> 3

Generating Fibonacci Numbers

x = 0

print x

y = 1

print y

for k in range(6):

 z = x+y

 x = y

 y = z

 print z

 0

 1

 1

 2

 3

 5

 8

 13

Generating Fibonacci Numbers

x = 0

print x

y = 1

print y

for k in range(6):

 z = x+y

 x = y

 y = z

 print z

x = 0

print x

y = 1

print y

k = 0

while k<6:

 z = x+y

 x = y

 y = z

 print z

 k = k+1

Print First Fibonacci Number
>= 1000000

x = 0

y = 1

z = x + y

while y < 1000000:

 x = y

 y = z

 z = x + y

print y

Print First Fibonacci Number
>= 1000000

past = 0

current = 1

next = past + current

while current < 1000000:

 past = current

 current = next

 next = past + current

print current

1346269

Print First Fibonacci Number
>= 1000000

past = 0

current = 1

next = past + current

while current < 1000000:

 past = current

 current = next

 next = past + current

print current

Reasoning. When the while loop terminates, it will be the first time that
current>= 1000000 is true. By print out current we see the first fib >= million

Print Largest Fibonacci
Number < 1000000

past = 0

current = 1

next = past + current

while next <= 1000000:

 past = current

 current = next

 next = past + current

print current

832040

Print Largest Fibonacci
Number < 1000000

past = 0

current = 1

next = past + current

while next < 1000000:

 past = current

 current = next

 next = past + current

print current

Reasoning. When the while loop terminates, it will be the first time that
next>= 1000000 is true. Current has to be < 1000000. And it is the largest fib
with this property

Fibonacci Ratios

past = 0

current = 1

next = past + current

while next <= 1000000:

 past = current

 current = next

 next = past + current

 print next/current

1.000000000000

2.000000000000

1.500000000000

1.666666666667

1.600000000000

1.625000000000

1.615384615385

1.619047619048

1.617647058824

1.618181818182

1.617977528090

1.618055555556

1.618025751073

1.618037135279

1.618032786885

 :
Heading towards the
Golden ratio = (1+sqrt(5))/2

Fibonacci Ratios
past = 0

current = 1

next = past + current

k = 1

phi = (1+math.sqrt(5))/2

while abs(next/current – phi) > 10**-9

 past = current

 current = next

 next = past + current

 k = k+1

print k,next/current

23 1.618033988749

Most Pleasing Rectangle

1

(1+sqrt(5))/2

