10. Iteration: The while-Loop

Topics:

Open-Ended repetition the while statement
Random Walk Simulation

Examples

Keep tossing a coin until the number of heads
and the number of tails differs by 10 .

Compute the square root of 2
$L=2 ; W=1$
Repeat this until $|L-W|<=.000001$:
$L=(L+W) / 2$
$W=x / L$

In both cases, we do not know the number of iterations that will be required

Open-Ended Iteration

So far, we have only addressed iterative problems inwhichwe know (inadvance) the required number of repetitions.

Not all iteration problems are like that.

Some iteration problems are open-ended.

Stir for 5 minutes vs Stiruntil fluffy.

The Random Walk Idea

We have a "runway" made up of 1×1 tiles.
There are $2 L+1$ tiles. ($L=5$ in the above.)
We call L the "length of the runway.
The center tile is located at $x=0$.

The Random Walk Idea

\square
$\begin{array}{lllllllllll}-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5\end{array}$
Starting at the center tile, a robot hops from tile to tile according to a coin flip.
Heads: Hop right one tile.
Tails: Hopleft one tile.
The simulation over when robot reaches either end (a.k.a. the boundary) of the runway.

We do not know in advance how many iterations we'll need,

The While Loop

Weintroduce an alternative to the for-loop called the while-loop.

The while loop is more flexible and is essential for ' 'open ended' iteration.

How Does a While-Loop Work?

A simple warm-up example:
Sum the first 5 whole numbers and di splay the summation process.

Two Solutions

$$
\mathrm{k}=0
$$

$$
s=0
$$

$$
\text { while } k<5 \text { : }
$$

$\mathrm{k}=\mathrm{k}+1$
$\mathrm{s}=\mathbf{s}+\mathrm{k}$
print k, s

$$
s=0
$$

$$
\text { for } k \text { in range }(1,6) \text { : }
$$

$$
s=s+k
$$

print k,s

The While-Loop Solution

$\mathrm{k}=0$		
$\mathrm{s}=0$	1	1
while $k<5$:	2	3
$\mathrm{k}=\mathrm{k}+1$	3	6
$=k+1$	4	10
$s=s+k$	5	15
print k, s		

Observation: k is used for counting, s is used for the running sum, and the while is used to control the repetition of the indented code.

The Solution

$$
\begin{aligned}
& \mathbf{k}=0 \\
& \mathbf{s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \begin{array}{|l}
\mathbf{k}=\mathbf{k}+1 \\
\mathbf{s}=\mathbf{s}+\mathbf{k} \\
\text { print } k, s
\end{array} \\
& \hline
\end{aligned}
$$

$\begin{array}{rr}1 & 1 \\ 2 & 3 \\ 3 & 6 \\ 4 & 10 \\ 5 & 15\end{array}$

Trace the Execution

$\mathbf{k}=0$	$\mathbf{k}->$	0
$\mathbf{s}=0$		
while $\mathbf{k}<5:$		
$\mathbf{k}=\mathbf{k}+1$		
$\mathbf{s}=\mathbf{s}+\mathbf{k}$		
print \mathbf{k}, \mathbf{s}		

At the start, k and s are initialized

Trace the Execution

$\mathrm{k}=\mathrm{k}+1$
$\mathrm{s}=\mathrm{s}+\mathrm{k}$
print k, s

Is the boolean condition true?

Trace the Execution

k -> 0
s -> 0

Yes, so execute the loop body

Trace the Execution

$\mathrm{k}=0$	k ->	2
$\mathrm{s}=0$		
while k < 5:	s ->	3
$\mathrm{k}=\mathrm{k}+1$		
$\mathbf{s}=\mathbf{s}+\mathrm{k}$		1
print k,s		

Is the boolean condition true?

Trace the Execution

```
k = 0
s = 0
while k < 5:
k = k + 1
s = s + k
print k,s
k -> \(\quad 1\)
s -> \(\quad 1\)
11
```


Trace the Execution

$$
\begin{align*}
& \mathbf{k}=0 \\
& \mathbf{s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \begin{array}{l}
\mathbf{k}=\mathbf{k}+1 \\
\mathbf{s}=\mathrm{s}+\mathrm{k} \\
\text { print } k, s
\end{array}
\end{align*}
$$

k -> 1
s -> 1

Yes, so execute the loop body

Trace the Execution

$\mathbf{k}=0$		
$\mathbf{s}=0$	$\mathbf{k}->$	2
while $\mathbf{k}<5:$		
$\mathbf{k}=\mathbf{k}+1$		
$\mathbf{s}=\mathbf{s}+\mathbf{k}$		
print \mathbf{k}, \mathbf{s}		$\mathbf{s}->$

Is the boolean condition true?

Trace the Execution

11
23

Yes, so execute the loop body

Trace the Execution

$\mathbf{k}=0$		
$\mathbf{s}=0$	$\mathbf{k}->$	3
while $\mathbf{k}<\mathbf{5 :}$		
$\mathbf{k}=\mathbf{k}+\mathbf{1}$		
$\mathbf{s}=\mathbf{s}+\mathbf{k}$		
print \mathbf{k}, \mathbf{s}	$\mathbf{s}->$	6

Is the boolean condition true?

Trace the Execution

Trace the Execution

```
k = 0
s = 0
while k < 5:
k = k + 1
s=s+k
s=s+k
k ->
s -> 6
11
\(\begin{array}{ll}2 & 3 \\ 3 & 6\end{array}\)
```


Trace the Execution

$$
\begin{aligned}
& \mathrm{s}=0 \\
& \text { while } k<5: \\
& \begin{array}{l}
\mathrm{k}=\mathrm{k}+1 \\
\mathrm{~s}=\mathrm{s}+\mathrm{k} \\
\text { print } \mathrm{k}, \mathrm{~s}
\end{array}
\end{aligned}
$$

k -> 3
s ->6

1	1
2	3
3	6

Yes, so execute the loop body

Trace the Execution

\longrightarrow| $\mathbf{k}=0$ |
| :--- |
| $s=0$ |
| while $k<5:$ |
| $k=k+1$
 $s=s$
 print k, s |

$\mathbf{k}=\mathbf{k}+1$ $s=s+k$
print k, s

Yes, so execute the loop body

Trace the Execution

```
k = 0
s = 0
while k < 5:
k -> 5
s -> \(\quad 15\)
```

 \(\mathrm{k}=\mathrm{k}+1\)
 $s=s+k$
print k, s

1
3
6
10
15

Trace the Execution

$$
\begin{aligned}
& \mathbf{k}=0 \\
& \mathbf{s}=0 \\
& \text { while } k<5: \\
& \quad \mathbf{k}=\mathbf{k}+1 \\
& \quad \mathbf{s}=\mathbf{s}+\mathrm{k} \\
& \text { print } k, s
\end{aligned}
$$

Is the boolean condition true? NO! The loop is over.

The While-Loop Mechanism

The Boolean expression is checked. If itis true, then the loop body is executed. The process is repeated until the Boolean expression is false. At that point the iteration terminates.

Back to Our Example

Random Walks

A very important type of random simulation.
A good example to showcase the while loop.

The Random Walk Idea

$\begin{array}{lllllllllll}-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5\end{array}$
We have a "runway" made up of 1×1 tiles.
There are $2 L+1$ tiles. ($L=5$ in the above.)
We call L the "length of the runway.
The center tile is located at $x=0$.

Back to Our Example
$\mathrm{k}=0$
$\mathrm{s}=0$
while $k<5$:
$\mathrm{k}=\mathrm{k}+1$
$\mathrm{s}=\mathrm{s}+\mathrm{k}$
print k, s
11
23
36
410
515

The Random Walk Idea

$\begin{array}{lllllllllll}-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5\end{array}$
Starting at the center tile, a robot hops from tile to tile according to a coin flip.
Heads: Hop right one tile.
Tails: Hopleft one tile.
The simulation over when robot reaches either end (a.k.a. the boundary) of the runway.

The Random Walk Idea

Question:

Given the runway length L, what is the average number of hops required for the robot to reach the boundary?

The Function RandomWalk(L)

```
def RandomWalk(L):
    hops = 0; x = 0
    while abs(x) < L:
        r = randi (0,1)
        if r == 0:
            x = x + 1
        else:
            x = x - 1
        hops += 1
    return hops
```

Initializations.
The robot starts at $x=0$. $r=r a n d i(0,1)$ if $r==0:$
$\mathbf{x}=\mathbf{x}+1$ else:
$\mathrm{x}=\mathrm{x}-1$
hops $+=1$
return hops

Implement ShowRandomWalk.py

from random import randint as randi
def RandomWalk (L) :
\# Returns the number of hops for
\# a single random walk.
def AveRandomWalk (L, n) :
\# Simulate n length- L random walks and
\# returns average number of required hops
if \qquad
_name__= '_main_1':
\# Display the value of AveRandomWalk
\# for various values of L

The Function RandomWalk(L)

```
def RandomWalk(L):
    hops = 0; x = 0
    while abs(x) < L:
        r = randi (0,1)
        if r == 0:
            x = x + 1
        else:
```

 \(\mathbf{x}=\mathbf{x}-1\)
 hops \(+=1\)
 return hops

The Function
 RandomWalk(L)

```
def RandomWalk(L):
    hops = 0; x = 0
    while abs(x) < L:
        r = randi (0,1)
        if r == 0:
            x = x + 1
        else:
            x = x - 1
        hops += 1
    return hops
```

We simulate the coin toss by picking 0 or 1 at random.

The Function RandomWalk(L)

```
def RandomWalk(L):
    hops = 0; x = 0
    while abs(x) < L:
        r = randi (0,1)
        if r == 0:
            x = x + 1
        else:
            x = x - 1
        hops += 1
    return hops
```


The While Loop

Tomore fully understand how this works, let's look at the execution of this while loop:

```
x = 0
while abs(x) < 5:
    r = randi (0,1)
    if r == 0:
        x = x+1
    else:
        x = x-1
```


Understanding the While Loop

Assume $r=0$
Coin $=$ Heads
Hop Right

$$
\begin{aligned}
& x=0 \\
& \text { while abs }(x)<5: \\
& r=\text { randi }(0,1) \\
& \text { if } r==0: \\
& x=x+1 \\
& \text { else: } \\
& x=x-1
\end{aligned}
$$

Understanding the While-Loop

- $x=0$
while abs $(x)<5$:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x}+1$
else:
$\mathrm{x}=\mathrm{x}-1$

Understanding the While Loop

$\mathbf{x}=0$
while abs $(x)<5$:
$r=\operatorname{randi}(0,1)$
if $r=0$:
$\mathrm{x}=\mathrm{x}+1$
else:
$\mathbf{x}=\mathbf{x}-1$

Understanding the While Loop

Understanding the While Loop

Assume $r=1$
Coin $=$ Tails
Hop Left
$\mathbf{x}=0$
while abs $(x)<5$:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x}+1$
else:
$\mathbf{x}=\mathbf{x}-1$

Understanding the While Loop

| $x=0$ |
| :--- | :--- |
| The value of x |
| is decreased |
| from 1 to 0. | \(\begin{gathered}x=randi(0,1)

if r==0:

x=x+1

else:

x=x-1\end{gathered}\)

Understanding the While Loop

Assume $r=0$
Coin $=$ Heads
Hop Right

$$
\begin{aligned}
& x=0 \\
& \text { while abs }(x)<5: \\
& r=\text { randi }(0,1) \\
& \text { if } r==0: \\
& x=x+1 \\
& \text { else: } \\
& x=x-1
\end{aligned}
$$

Understanding the While Loop

$\mathrm{x}=0$
while abs $(x)<5:$
$r=\operatorname{randi}(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x}+1$
else:
$\mathbf{x}=\mathbf{x}-1$

Understanding the While Loop

The value of x

$$
\mathbf{x}=0
$$

$$
\text { while abs }(x)<5:
$$

$$
r=r a n d i(0,1)
$$

$$
\text { if } r=0 \text { : }
$$

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

Assumer $=0$
Coin = Heads
Hop Right

Understanding the While Loop

Understanding the While Loop

Assume $r=0$
Coin $=$ Heads
Hop Right

$$
\begin{aligned}
& x=0 \\
& \text { while abs }(x)<5: \\
& r=\text { randi }(0,1) \\
& \text { if } r=0: \\
& x=x+1 \\
& \text { else }: \\
& x=x-1
\end{aligned}
$$

Understanding the While Loop

$\mathrm{x}=0$
while abs $(x)<5:$
$r=\operatorname{randi}(0,1)$ if $r=0$:
$\mathrm{x}=\mathrm{x}+1$
else:
$\mathbf{x}=\mathbf{x}-1$

Understanding the While Loop

The value of x

$$
\mathbf{x}=0
$$

$$
\text { while abs }(x)<5:
$$

$$
r=\operatorname{randi}(0,1)
$$

$$
\text { if } r=0 \text { : }
$$

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

	$\mathbf{x}=0$
$a b s(x)<5$ is true.	$r=r a n d i(0,1)$
Robot notat boundary.	$\text { if } \begin{aligned} \mathbf{r} & =0: \\ \mathrm{x} & =\mathrm{x}+1 \end{aligned}$
Loop continues	else:
	$\mathbf{x}=\mathbf{x - 1}$

Understanding the While Loop

Assume $r=1$
Coin $=$ Tails
Hop Left
$\mathrm{x}=0$
while abs $(x)<5$:

$$
r=\operatorname{randi}(0,1)
$$

$$
\text { if } r==0:
$$

$$
x=x+1
$$

else:
$\mathbf{x}=\mathbf{x - 1}$

Understanding the While Loop

$x=0$	
The value of x	
is decreased	
from 3 to 2.	$\begin{array}{c}x=\text { abs }(x)<5: \\ \text { if } r==0: \\ x=x+1 \\ \text { else: } \\ x=x-1\end{array}$

Understandingthe While Loop

	$\begin{aligned} & \mathrm{x}=0 \\ & \text { while abs }(\mathrm{x})<5: \end{aligned}$
Assume $\mathrm{r}=1$	$r=r a n d i(0,1)$
Coin $=$ Heads	if $r==0$:
Hop Right	$\begin{aligned} & \quad x=x+1 \\ & \text { else: } \end{aligned}$
	$\mathbf{x}=\mathbf{x - 1}$

Understanding the While Loop

	$\mathbf{x}=0$ while abs (x) < 5:
$a b s(x)<5$ is true.	$r=r a n d i(0,1)$
Robot notat boundary.	$\text { if } \begin{aligned} r & =0: \\ x & =x+1 \end{aligned}$
Loop continues	else:
	$\mathbf{x}=\mathbf{x}-1$

Understanding the While Loop

$\mathrm{x}=0$
while abs (x) < 5:
$r=\operatorname{randi}(0,1)$ if $r=0$:
$\mathrm{x}=\mathrm{x}+1$
else:
$\mathbf{x}=\mathbf{x}-1$

Understanding the While Loop

The value of x

$$
\mathbf{x}=0
$$

$$
\text { while abs }(x)<5:
$$

$$
r=\operatorname{randi}(0,1)
$$

$$
\text { if } r=0 \text { : }
$$

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

Assumer $=0$
Coin = Heads
Hop Right

$$
\begin{aligned}
& x=0 \\
& \text { while abs }(x)<5: \\
& r=\text { randi }(0,1) \\
& \text { if } r==0: \\
& x=x+1 \\
& \text { else: } \\
& x=x-1
\end{aligned}
$$

Understanding the While Loop

| $x=0$ |
| :--- | :--- |
| The value of x |
| is increased |
| from 3 to 4. |
| $r=$ abs $(x)<5:$ |
| if $r==0:$ |
| $x=x+1$ |
| else: |
| $x=x-1$ |

Understanding the While Loop

	$\begin{aligned} & \mathrm{x}=0 \\ & \text { while abs }(\mathrm{x})<5: \end{aligned}$
Assume $\mathrm{r}=0$	$\bigcirc \quad r=r a n d i(0,1)$
Coin $=$ Heads	if $r==0$:
Hop Right	else:
	$\mathbf{x}=\mathbf{x - 1}$

Understanding the While Loop

Understanding the While Loop

$\mathrm{x}=0$
while abs (x) < 5:
$r=\operatorname{randi}(0,1)$ if $r=0$:
$\mathrm{x}=\mathrm{x}+1$
else:
$\mathbf{x}=\mathbf{x}-1$

Understanding the While Loop

The value of x

$$
\mathbf{x}=0
$$

$$
\text { while abs }(x)<5:
$$

is increased

$$
r=\operatorname{randi}(0,1)
$$ from 4 to 5.

$$
\text { if } r=0 \text { : }
$$

$$
x=x+1
$$

else:

$$
x=x-1
$$

The Application Script

Check out the cases $L=5,10,15,20,25,30,35,40$:

```
if ___name___= '__main__':
    n}=1000 # Number of trial
    for L in range (5,45,5):
            print L, AveRandomWalk (L,n)
```


The Function
 AveRandomWalk (L, n)

```
def AveRandomWalk (L,n):
    s = 0
    for k in range(0,n):
        RequiredHops = RandomWalk(L)
        s += RequiredHops
    ave = float(s)/float(n)
    return ave
```


Sample Output

L			Ave
-------		Looks like 5	24
10	93		doubling L increases the
15	219		average by
20	399		a factor of 4.
25	649		
30	917		Insight
35	1259		through
40	1594		Computing!

