10. Iteration: The while-Loop

Topics:
Open-Ended repetition the while statement
Random Walk Simulation

Open-Ended Iteration

So far, we have only addressed iterative problems in which we know (in advance) the required number of repetitions.

Not all iteration problems are like that.

Some iteration problems are open-ended.

Stir for 5 minutes vs Stir until fluffy.

Examples

Keep tossing a coin until the number of heads and the number of tails differs by 10.

Compute the square root of 2
$L=2 ; W=1$
Repeat this until $|L-W|<=.000001$:

$$
\begin{aligned}
& L=(L+W) / 2 \\
& W=x / L
\end{aligned}
$$

In both cases, we do not know the number of iterations that will be required

The Random Walk Idea

We have a "runway" made up of 1×1 tiles.
There are $2 L+1$ tiles. ($L=5$ in the above.)
We call L the "length of the runway.
The center tile is located at $x=0$.

The Random Walk Idea

$$
\begin{array}{lllllllllll}
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Starting at the center tile, a robot hops from tile to tile according to a coin flip.

Heads: Hop right one tile.
Tails: Hop left one tile.
The simulation over when robot reaches either end (a.k.a. the boundary) of the runway.

We do not know in advance how many iterations we'll need,

The While Loop

We introduce an alternative to the for-loop called the while-loop.

The while loop is more flexible and is essential for "'open ended" iteration.

How Does a While-Loop Work?

A simple warm-up example:
Sum the first 5 whole numbers and display the summation process.

Two Solutions

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \mathbf{k}=\mathbf{k}+1 \\
& \mathrm{~s}=\mathrm{s}+\mathrm{k} \\
& \text { print } \mathrm{k}, \mathrm{~s}
\end{aligned}
$$

The While-Loop Solution

$$
\begin{aligned}
& \mathbf{k}=0 \\
& \mathbf{s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \mathbf{k}=\mathbf{k}+1 \\
& \quad \mathbf{s}=\mathbf{s}+\mathbf{k} \\
& \quad \text { print } k, s
\end{aligned}
$$

Observation: k is used for counting, s is used for the running sum, and the while is used to control the repetition of the indented code.

The Solution

$$
\begin{aligned}
& k=0 \\
& s=0 \\
& \text { while } k<5: \\
& \quad \begin{array}{l}
k=k+1 \\
s=s+k \\
\text { print } k, s
\end{array}
\end{aligned}
$$

$$
\begin{array}{rr}
1 & 1 \\
2 & 3 \\
3 & 6 \\
4 & 10 \\
5 & 15
\end{array}
$$

We call this the "loop body"

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } k \text { < 5: } \\
& \mathrm{k}=\mathrm{k}+1 \\
& \mathbf{s}=\mathbf{s}+\mathrm{k} \\
& \text { print k,s }
\end{aligned}
$$

At the start, k and s are initialized

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \mathbf{k}=\mathbf{k}+1 \\
& \mathbf{s}=\mathbf{s}+\mathbf{k} \\
& \quad \text { print } \mathrm{k}, \mathrm{~s}
\end{aligned}
$$

Is the boolean condition true?

Trace the Execution

$$
\begin{aligned}
& \mathbf{k}=0 \\
& \mathbf{s}=0
\end{aligned}
$$

$$
\text { while } k<5:
$$

$$
k=k+1
$$

$$
s=s+k
$$

print k,s

Yes, so execute the loop body

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathrm{k}<5: \\
& \begin{array}{l}
\mathrm{k}=\mathrm{k}+1 \\
\mathrm{~s}=\mathrm{s}+\mathrm{k} \\
\text { print } \mathrm{k}, \mathrm{~s}
\end{array}
\end{aligned}
$$

Trace the Execution

$\mathbf{k}=0$

$$
s=0
$$

$$
\text { while } k<5:
$$

$$
k=k+1
$$

$$
\mathbf{s}=\mathbf{s}+\mathbf{k}
$$

print k,s

Is the boolean condition true?

Trace the Execution

$\mathrm{k}=0$

$$
s=0
$$

$$
\text { while } k<5:
$$

$$
k=k+1
$$

$$
s=s+k
$$

$$
\begin{array}{cccc}
\mathbf{k}-\mathbf{y} & 1 \\
& & 1 & \\
& \mathbf{s}-> & 1 & \\
& & 1 & 1
\end{array}
$$

print k,s

Yes, so execute the loop body

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathrm{k}<5: \\
& \quad \begin{array}{l}
\mathrm{k}=\mathrm{k}+1 \\
\mathrm{~s}=\mathrm{s}+\mathrm{k} \\
\text { print } \mathrm{k}, \mathrm{~s}
\end{array}
\end{aligned}
$$

$$
\begin{array}{llll}
\mathbf{k}-\mathbf{r} & 2 \\
& & \\
\mathbf{s}-> & 3 & \\
& & & \\
& & 1 \\
2 & 3
\end{array}
$$

Trace the Execution

$$
\begin{array}{|l|l|}
\hline \mathbf{k}=0 \\
\mathbf{s}=0 \\
\text { while } \mathbf{k}<5: \\
\mathbf{k}=\mathbf{k}+1 \\
\mathbf{s}=\mathbf{s}+\mathbf{k} \\
\text { print } \mathbf{k}, \mathbf{s} & \mathbf{k}-\mathbf{y} \\
\hline
\end{array}
$$

Is the boolean condition true?

Trace the Execution

$$
\begin{array}{|l|l|}
\hline \mathbf{k}=0 \\
\mathbf{s}=0 & \mathbf{k}-> \\
\text { while } \mathbf{k}<\mathbf{5}: \\
\begin{array}{|l|l}
\hline \mathbf{k}=\mathbf{k}+1 \\
\mathbf{s}=\mathbf{s}+\mathbf{k} \\
\text { print k, s } \\
\hline
\end{array} & \mathbf{s}-> \\
\hline
\end{array}
$$

Yes, so execute the loop body

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathrm{k}<5: \\
& \begin{array}{l}
\mathrm{k}=\mathrm{k}+1 \\
\mathrm{~s}=\mathrm{s}+\mathrm{k} \\
\text { print } \mathrm{k}, \mathrm{~s}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { k -> } 3 \\
& \text { s -> } \\
& 6 \\
& 11 \\
& 23 \\
& 36
\end{aligned}
$$

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } k \text { < 5: } \\
& \mathrm{k}=\mathrm{k}+1 \\
& \mathrm{~s}=\mathrm{s}+\mathrm{k} \\
& \text { print k,s } \\
& \text { k -> } 3 \\
& \text { s -> } \quad 6 \\
& 11 \\
& 23 \\
& 36
\end{aligned}
$$

Is the boolean condition true?

Trace the Execution

$$
\begin{array}{|l|l|}
\hline \mathbf{k}=0 \\
\mathbf{s}=0 \\
\text { while } \mathbf{k}<5: \\
\begin{array}{|l|l|}
\hline \mathbf{k}=\mathbf{k}+1 \\
\mathbf{s}=\mathbf{s}+\mathbf{k} \\
\text { print } \mathbf{k}, \mathbf{s} \\
\hline
\end{array} & \mathbf{k}-\mathbf{y} \\
\hline
\end{array}
$$

Yes, so execute the loop body

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathrm{k}<5: \\
& \quad \begin{array}{l}
\mathrm{k}=\mathrm{k}+1 \\
\mathrm{~s}=\mathrm{s}+\mathrm{k} \\
\text { print } \mathrm{k}, \mathrm{~s}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { k -> } 4 \\
& \text { s -> } 10 \\
& 11 \\
& 23 \\
& 36 \\
& 410
\end{aligned}
$$

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \mathbf{k}=\mathbf{k}+1 \\
& \mathbf{s}=\mathbf{s}+\mathbf{k} \\
& \quad \text { print } \mathrm{k}, \mathrm{~s}
\end{aligned}
$$

Is the boolean condition true?

Trace the Execution

$\mathbf{k}=0$
$\mathrm{s}=0$ while $k<5:$
$\mathrm{k}=\mathrm{k}+1$
$s=s+k$ print k,s

$$
\begin{aligned}
& \text { k -> } 4 \\
& \text { s -> } \quad 10 \\
& 1 \quad 1 \\
& 23 \\
& 36 \\
& 410
\end{aligned}
$$

Yes, so execute the loop body

Trace the Execution

$$
\begin{array}{|l|l|l|}
\hline \mathbf{k}=0 \\
\mathbf{s}=0 \\
\text { while } \mathbf{k}<\mathbf{5 :} \\
\begin{array}{|l|l|l|}
\hline \mathbf{k}=\mathbf{k}+\mathbf{1} \\
\mathbf{s}=\mathbf{s}+\mathbf{k} \\
\text { print } \mathbf{k}, \mathbf{s} \\
\hline
\end{array} & \mathbf{k}-> & 5 \\
\hline & \mathbf{s}-> & 15 \\
\hline
\end{array}
$$

Trace the Execution

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{~s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \mathbf{k}=\mathbf{k}+1 \\
& \mathrm{~s}=\mathrm{s}+\mathrm{k} \\
& \mathrm{print} \mathrm{k}, \mathrm{~s}
\end{aligned}
$$

Is the boolean condition true?
NO! The loop is over.

The While-Loop Mechanism

while A Boolean Expression :
The Loop Body

The Boolean expression is checked. If it is true, then the loop body is executed. The process is repeated until the Boolean expression is false. At that point the iteration terminates.

The Broader Context

Code that comes before the loop
while

A Boolean Ex Le Loop Body

Code that comes after the loop

Every variable involved in the Boolean expression must be initialized.

The Broader Context

Code that comes before the loop

while

Le Loop Body

Code that comes after the loop

After the loop terminates the nextstatement after the loop is executed.

The Broader Context

Code that comes before the loop

while A Boolean Expression :

The Loop Body

Code that comes after the loop

Back to Our Example

$$
\begin{aligned}
& \mathbf{k}=0 \\
& \mathbf{s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \begin{array}{l}
\mathbf{k}=\mathbf{k}+1 \\
\mathbf{s}=\mathrm{s}+\mathrm{k} \\
\text { print } \mathrm{k}, \mathrm{~s}
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
1 & 1 \\
2 & 3 \\
3 & 6 \\
4 & 10 \\
5 & 15
\end{array}
$$

Back to Our Example

$$
\begin{aligned}
& \mathbf{k}=0 \\
& \mathbf{s}=0 \\
& \text { while } \mathbf{k}<5: \\
& \begin{array}{l}
\mathbf{k}=\mathbf{k}+1 \\
\mathbf{s}=\mathbf{s}+\mathrm{k}
\end{array} \\
& \text { print } \mathbf{k}, \mathbf{s}
\end{aligned}
$$

Random Walks

A very important type of random simulation.
A good example to showcase the while loop.

The Random Walk Idea

We have a "runway" made up of 1×1 tiles.
There are $2 L+1$ tiles. ($L=5$ in the above.)
We call L the "length of the runway.
The center tile is located at $x=0$.

The Random Walk Idea

Starting at the center tile, a robot hops from tile to tile according to a coin flip.
Heads: Hop right one tile.
Tails: Hop left one tile.
The simulation over when robot reaches either end (a.k.a. the boundary) of the runway.

The Random Walk Idea

$$
\begin{array}{lllllllllll}
-5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Question:

Given the runway length L, what is the average number of hops required for the robot to reach the boundary?

Implement ShowRandomWalk.py

from random import randint as randi
def RandomWalk (L) :
\# Returns the number of hops for \# a single random walk.
def AveRandomWalk (L, n) :
\# Simulate n length-L random walks and \# returns average number of required hops
if name_ $==$ ' main_' \# $:$ \# for various values of L

The Function RandomWalk(L)

def RandomWalk(L):
hops $=0 ; \mathbf{x}=0$
while abs (x) < L:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x}+1$
else:

$$
x=x-1
$$

hops $+=1$
return hops

The Function RandomWalk (L)

def RandomWalk(L):
hops $=0 ; \mathbf{x}=0$
while abs(x) < L:
$r=$ randi $(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x}+1$
else:

$$
x=x-1
$$

hops $+=1$
return hops

The Function RandomWalk(L)

def RandomWalk(L):
hops $=0 ; \mathbf{x}=0$
while abs (x) < L:
$r=\operatorname{randi}(0,1)$
if $r=0$:

$$
x=x+1
$$

else:

$$
\mathbf{x}=\mathbf{x}-1
$$

hops $+=1$
return hops

We simulate the coin toss by picking 0 or 1 at random.

The Function RandomWalk(L)

def RandomWalk(L):
hops $=0 ; \mathbf{x}=0$
while abs (x) < L:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x}+1$
else:

$$
\mathbf{x}=\mathbf{x}-1
$$

hops $+=1$
return hops

The While Loop

To more fully understand how this works, let's look at the execution of this while loop:

$$
\begin{aligned}
& x=0 \\
& \text { while abs }(x)<5: \\
& r=\text { randi }(0,1) \\
& \text { if } r=0: \\
& x=x+1 \\
& \text { else: } \\
& x=x-1
\end{aligned}
$$

Understanding the While-Loop

$\mathbf{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assume $=0$
Coin = Heads
Hop Right
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$ if $r=0$:

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is increased from 0 to 1.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues.
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assumer $=1$
Coin = Tails
Hop Left
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is decreased from 1 to 0 .

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:

$$
x=x+1
$$

else:
$x=x-1$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assume $=0$
Coin = Heads
Hop Right
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$ if $r=0$:

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is increased from 0 to 1.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assumer $=0$
Coin = Heads
Hop Right
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is increased from 1 to 2.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
($\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assume $=0$
Coin $=$ Heads
Hop Right
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$ if $r=0$:

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is increased from 2 to 3.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assume $=1$
Coin = Tails
Hop Left
while abs (x) < 5:
$r=r a n d i(0,1)$ if $r=0$:

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is decreased from 3 to 2.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:

$$
x=x+1
$$

else:
$x=x-1$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understandingthe While Loop

Assume $=1$

Coin $=$ Heads
Hop Right
$\mathbf{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$\mathrm{x}=\mathrm{x}+1$
else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is increased from 2 to 3.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
($\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assume $=0$
Coin = Heads
Hop Right
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$ if $r=0$:

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is increased from 3 to 4.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$x=x+1$
else:

$$
x=x-1
$$

Understanding the While Loop

$\operatorname{abs}(x)<5$ is true.
Robot not at boundary.

Loop continues
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$
if $r==0:$
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

Assumer $=0$
Coin $=$ Heads
Hop Right
$\mathrm{x}=0$
while abs (x) < 5:
$r=r a n d i(0,1)$ if $r=0$:

$$
x=x+1
$$

else:

$$
x=x-1
$$

Understanding the While Loop

The value of x is increased from 4 to 5.

$$
x=0
$$

while abs (x) < 5:
$r=r a n d i(0,1)$
if $r=0$:
$\mathbf{x}=\mathbf{x + 1}$
else:

$$
x=x-1
$$

Understanding the While Loop

$a b s(x)<5$ is False.
Robot is on the boundary.

Loop TERMINATES

$$
x=0
$$

$$
\text { while abs }(x)<5:
$$

$$
r=\operatorname{randi}(0,1)
$$

$$
\text { if } r=0:
$$

$$
x=x+1
$$

else:

$$
\mathbf{x}=\mathbf{x}-1
$$

The Application Script

Check out the cases $L=5,10,15,20,25,30,35,40$:
if __name_ $==$ ' main_':
for L in range $(5,45,5)$: print L, AveRandomWalk (L, n)

The Function AveRandomWalk (L, n)

def AveRandomWalk (L, n) :
$\mathrm{s}=0$
for k in range $(0, n)$:
RequiredHops $=$ RandomWalk(L)
s += RequiredHops
ave $=$ float(s)/float(n)
return ave

Sample Output

L	Ave	

5	24	\bigcirc
10	93	
15	219	
20	399	
25	649	
30	917	
35	1259	
40	1594	

Looks like doubling L increases the average by a factor of 4.

Insigh \dagger through Computing!

Averages based on 1000 trials.

