9B. Random Simulations

Topics:

The class random
Estimating probabilities
Estimating averages
More occasions to practice iteration

The random Module

Contains functions that can be used in the design of random simulations.

We will practice with these:
random. randint (a, b)
random. uniform (a,b)
random.normalvariate (mu,sigma)

Generating Random Integers

If a and b are initialized integers with $\mathrm{a}<\mathrm{b}$ then

$$
\mathrm{i}=\text { random.randint }(\mathrm{a}, \mathrm{~b})
$$

assigns to i a "random" integer that satisfies

$$
\mathrm{a}<=\mathrm{i}<=\mathrm{b}
$$

What Does "Random" Mean?

import random
for k in range(1000000): $i=r a n d o m . r a n d i n t(1,6)$ print i

The output would "look like" you rolled a dice one million times and recorded the outcomes.

No discernible pattern.
Roughly equal numbers of 1's, 2's, 3's, 4's, 5's, and 6's.

Renaming Imported Functions

import random

for k in range(1000000): $i=r a n d o m . r a n d i n t(1,6)$ print i
from random import randint as randi for k in range (1000000):
$i=r a n d i(1,6)$
print i

Random Simulation

We can use randint to simulate genuinely random events, e.g.,

Flip a coin one million times and record the number of heads and tails.

Coin Toss

from random import randint as randi
$\mathbf{N}=1000000$
Heads $=0$
Tails $=0$
for k in range (N):
$i=$ randi $(1,2) \quad$ randireturns 1 or 2
if $i==1:$
Heads $=$ Heads +1 Convention: " 1 " is heads else:

Tails = Tails+1 Convention: "2" is tails

The "count" variables Heads and Tails are initialized
print N, Heads, Tails

A Handy Short Cut

Incrementing a variable is such a common calculation that Python supports a shortcut.

These are equivalent:

$$
\begin{aligned}
& x+=1 \\
& x=x+1
\end{aligned}
$$

Coin Toss

from random import randint as randi
$\mathrm{N}=1000000$
Heads $=0$
Tails $=0$
The "count" variables Heads and Tails are initialized
for k in range (N):
$i=$ randi $(1,2) \quad$ randireturns 1 or 2
if $i==1:$
Heads+=1
else:
Tails+=1
Convention: "1" is heads

Convention: "2" is tails
print N, Heads, Tails

Sample Outputs

$$
\begin{aligned}
\mathbf{N} & =1000000 \\
\text { Heads } & =500636 \\
\text { Tails } & =499364
\end{aligned}
$$

$$
\mathrm{N}=1000000
$$

Heads $=499354$
Tails $=500646$

Different runs produce different results.

This is consistent with what would happen if we physically tossed a coin one million times.

Estimating Probabilities

You roll a dice. What is the probability that the outcome is " 5 "?

Of course, we know the answer is $1 / 6$. But let's "discover" this through simulation.

Dice Roll

from random import randint as randi
$\mathrm{N}=6000000$
count $=0$
for k in range (N):
$i=r a n d i(1,6)$
if i==5:
count+=1
prob $=$ float(count)/float(N) print prob

N is the number of "experiments".
i is the outcome of an experiment
prob is the probability the outcome is 5

Dice Roll

from random import randint as randi $\mathrm{N}=6000000$
count $=0$
for k in range (N):
$i=\operatorname{randi}(1,6)$
if i==5:

Output:

count+=1
prob $=$ float(count)/float(N)
print prob

Discovery Through Simulation

Roll three dice.

What is the probability that the three outcomes are all different?

If you know a little math, you can do this without the computer. Let's assume that we don't know that math.

Solution

$\mathrm{N}=1000000$

count $=0$
for k in range ($1, \mathrm{~N}+1$):
$\mathrm{d} 1=\operatorname{randi}(1,6) \quad$ Note the
$\mathrm{d} 2=$ randi $(1,6)$
3 calls to randi
d3 $=$ randi $(1,6)$
if $d 1!=d 2$ and $d 2!=d 3$ and $d 3!=d 1:$ count +=1
if $k \% 100000=0$:
print k,float(count)/float(k)

Sample Output

100000	0.554080
200000	0.555125
300000	0.555443
400000	0.555512
500000	0.555882
600000	0.555750
700000	0.555901
800000	0.556142
900000	0.555841
1000000	0.555521

Note how we say "sample output" because if the script is
run again, then we will get different results.

Educated guess: true prob $=5 / 9$

Generating Random Floats

Problem:

Randomly pick a float in the interval [0,1000].

What is the probability that it is in [100,500]?

Answer $=(500-100) /(1000-0)=.4$

Generating Random Floats

If a and b are initialized floats with $\mathrm{a}<\mathrm{b}$ then

$$
\mathbf{x}=\text { random.uniform }(\mathrm{a}, \mathrm{~b})
$$

assigns to \mathbf{x} a "random" float that satisfies

$$
\mathrm{a}<=\mathrm{x}<=\mathrm{b}
$$

The Uniform Distribution

Picture:

The probability that

$$
L<=\text { random. uniform }(a, b)<=R
$$

is true is

$$
(R-L) /(b-a)
$$

Illustrate the Uniform Distribution

```
from random import uniform as randu
N = 1000000
a = 0; b = 1000; L = 100; R = 500
count = 0
for k in range(N):
    x = randu (a,b)
    if L<=x<=R:
                            count+=1
prob = float(count)/float(N)
fraction = float(R-L)/float(b-a)
print prob,fraction
```


Sample Output

Estimated probability: 0.399928

$$
(\mathrm{R}-\mathrm{L}) /(\mathrm{b}-\mathrm{a}): 0.400000
$$

Estimating Pi Using random.uniform(a,b)

Idea:
Set up a game whose outcome tells us something about pi.

This problem solving strategy is called Monte Carlo. It is widely used in certain areas of science and engineering.

The Game

Throw darts at the
2×2 cyan square that is centered at $(0,0)$.

If the dart lands in the radius-1 disk, then count that as a "hit".

3 Facts About the Game

1. Area of square $=4$
2. Area of disk is pi since the radius is 1 .
3. Ratio of hits to throws should approximate pi/4 and so

4*hits/throws "=" pi

Example

1000 throws

776 hits

$\mathrm{Pi}=4 * 776 / 1000$
$=3.104$

When Do We Have a Hit?

The boundary of the disk is given by

$$
x^{* *} 2+y^{* *} 2=1
$$

If (x, y) is the coordinate of the dart throw, then it is inside the disk if

$$
x * * 2+y * * 2<=1
$$

is True.

Solution

from random import uniform as randu $\mathrm{N}=1000000$
Hits $=0$
for throws in range (N):

$$
\begin{aligned}
& \mathbf{x}=\operatorname{randu}(-1,1) \\
& \mathbf{y}=\operatorname{randu}(-1,1)
\end{aligned}
$$

Note the 2 calls to randu

$$
\text { if } x * * 2+y * * 2<=1 \text { : }
$$

\# Inside the unit circle Hits += 1
piEst $=4 * f l o a t(H i t s) / f l o a t(N)$

Repeatability of Experiments

In science, whenever you make a discovery through experimentation, you must provide enough details for others to repeat the experiment.

We have "discovered" pi through random simulation. How can others repeat our computation?

random.seed

What we have been calling random numbers are actually pseudo-random numbers.

They pass rigorous statistical tests so that we can use them as if they are truly random.

But they are generated by a program and are anything but random.

The seed function can be used to reset the algorithmic process that generates the pseudo random numbers.

Repeatable Solution

from random import uniform as randu from random import seed $\mathrm{N}=1000000$; Hits $=0$ seed (0)

```
                                    Now we will
                                    get the same
                                    answer every
                                    time
```

for throws in range (N):

$$
\begin{aligned}
& x=\operatorname{randu}(-1,1) ; y=\operatorname{randu}(-1,1) \\
& \text { if } x * * 2+y * * 2<=1:
\end{aligned}
$$

Hits $+=1$
piEst $=4 * f l o a t(H i t s) / f l o a t(N)$

Another Example

Produce this
"random square" design.

Think: I toss post-its of different colors and sizes onto a table.

Solution Framework

Repeat:

1. Position a square randomly in the figure window.
2. Choose its side length randomly.
3. Determine its tilt randomly
4. Color it cyan, magenta, or, yellow randomly.

Getting Started

from random import uniform as randu from random import randint as randi from SimpleGraphics import *

$$
n=10
$$

MakeWindow ($\mathrm{n}, \mathrm{bgcolor=BLACK} \mathrm{)}$

Note the
3 calls to randi
for k in range (400):
\# Draw a random colored square pass
ShowWindow ()
"pass" is a necessary place holder. Without it, this script will not run

Positioning the square

The figure window is built from MakeWindow (n).

A particular square with random center (x, y) will be located using randu :

$$
\begin{aligned}
& \mathbf{x}=\operatorname{randu}(-\mathrm{n}, \mathrm{n}) \\
& \mathrm{y}=\operatorname{randu}(-\mathrm{n}, \mathrm{n})
\end{aligned}
$$

The Size s of the square

Let's make the squares no bigger than n/3 on a side.

$$
s=r a n d u(0, n / 3.0)
$$

The tilt of the square

Pick an integer from 0 to 45 and rotate the square that many degrees.

$$
t=\text { randi }(0,45)
$$

The Color of the square

With probability $1 / 3$, color it cyan With probability $1 / 3$ color it magenta With probability $1 / 3$, color it yellow.

$$
\begin{aligned}
& \text { i = randi }(1,3) \\
& \text { if } \begin{array}{l}
\text { i= }=1 ; \\
c
\end{array}=\text { CYAN } \\
& \text { elif } i==2: \\
& c=\text { MAGENTA } \\
& \text { else }: \\
& c=\text { YELLOW }
\end{aligned}
$$

The Final Loop Body

```
x = randu(-n,n)
Y = randu ( }-\textrm{n},\textrm{n}
s = randu (0,n/3.0) The side
t = randi (0,45) The tilt
i = randi (1,3)
if i==1:
    C = CYAN
elif i==2:
    C = MAGENTA
else:
    C = YELLOW
```

DrawRect (x,y,s,s,tilt=t,FillColor=c)

Stepwise Refinement

Appreciate the problem-solving methodology just illustrated.

It is called stepwise refinement.

We started at the top level. A for-loop strategy was identified first. Then, one-by-one, we dealt with the location, size, tilt, and color issues.

Another Example: TriStick

Pick three sticks each having a random length between zero and one.

You win if you can form a triangle whose sides are the sticks. Otherwise you lose.

TriStick

Win:

Lose:

The Problem to Solve

Estimate the probability of winning a game of TriStick by simulating a million games and counting the number of wins.

We proceed using the strategy of step-wise refinement...

Pseudocode

Initialize running sum variable.
Repeat 1,000,000 times:
Play a game of TriStick by picking the three sticks.
If you win increment the running sum
Estimate the probability of winning

Pseudocode: Describing an algorithm in English but laying out its parts in python style

The Transition

Pseudocode

via
stepwise refinement

Finished Python Code

First Refinement

Initialize running sum variable.
Repeat 1,000,000 times:
Play a game of TriStick by picking
the three sticks.
If you win
increment the running sum
Estimate the probability of winning

Next, Refine the Loop Body

\# Initialize running sum variable.
wins $=0$
for n in range (1000000):
Play the nth game of TriStick by picking the three sticks.
If you win
increment the running sum.
\# Estimate the prob of winning
$\mathrm{p}=$ float(wins)/1000000

Refine the Loop Body

Play the nth game of TriStick by picking the three sticks.
If you win increment the running sum.

```
a = randu (0,1)
b randu (0, 1) The 3 sticks
c = randu (0,1)
if a<=b+c and b<=a+c and c<=a+b:
    wins +=1
```


Key Problem-Solving Strategy

Progress from pseudocode to Python through a sequence of refinements.

Comments have an essential role during the transitions. They remain all the way to the finished code.

Final "Random" Topic: The Normal Distribution

Generating floats from the Normal Distribution

If mu and sigma (positive) are floats, then $\mathbf{x}=$ random.normalvariate (mu,sigma)
assigns to \mathbf{x} a "random" float sampled from the normal distribution with mean mu and standard deviation sigma

Normal Distribution
 Mean $=0$, Standard Deviation $=1$

Typical Situation: Test Scores

from random import normalvariate as randn for k in range (450):
$x=r a n d n(70,7)$
print round (x)

This would look like a report of test scores from a class of 450 students.

The mean is approximately 70 and the standard deviation is approximately 7.

More on Standard Dev

Generate a million random numbers using
random.normalvariate (mu,sigma)
and confirm that the generated data has mean mu and std sigma

Checking Out randn

$\mathrm{N}=1000000 ;$ sum1 $=0 ;$ sum2 $=0$ mu $=70$; sigma $=7$
for k in range (N) :
$\mathbf{x}=$ randn (mu,sigma)
sum1 += x
sum2 $+=(x-m u) * * 2$
ApproxMean $=$ float(sum1)/float(N)
ApproxSTD = sqrt(float(sum2)/float(N))

Sample Output: $70.007824 \quad 6.998934$

Final Reminder

randi, randu, and randn are RENAMED versions of
random. randint
random.uniform
random.normalvariate

