9A. Iteration with range

Topics:
Using for with range Summation
Computing Min's
Functions and for-loops
A Graphics Applications

Iterating Through a String

Output:
a
b
C
d

In this example, the "for-loop" variable is c. One at a time, it takes on the value of each character in s.

Iterating Through a Range

$$
\begin{array}{|l|}
\mathrm{n}=4 \\
\text { for } k \text { in range }(n): \\
\quad \text { print } k
\end{array}
$$

Output:

0

1
2
3

Note the Similarities

$$
\begin{aligned}
& n=4 \\
& \text { for } k \text { in range }(n): \\
& \quad \text { print } k
\end{aligned}
$$

$$
\begin{aligned}
& s=\text { 'abcd' } \\
& \text { for } c \text { in } s: \\
& \text { print } c
\end{aligned}
$$

a

Output:

Output:
b
C
d

Summation is a Good Example

$$
\begin{aligned}
& \mathrm{n}=4 \\
& \mathrm{~s}=0 \\
& \text { for } k \text { in range }(\mathrm{n}): \\
& \quad \begin{array}{l}
\mathrm{x}=2 * * \mathrm{k} \\
\mathrm{~s}=\mathrm{s}+\mathrm{x}
\end{array}
\end{aligned}
$$

Output:
print s
15

$$
1+2+4+8=15
$$

for-loop Mechanics with range

for k in range(4):

Loop Body

Let $k=0$ and then execute the loop body.
Let $k=1$ and then execute the loop body.
Let $k=2$ and then execute the loop body.
Let $k=3$ and then execute the loop body.

Summation

$$
\begin{aligned}
& n=4 \\
& s=0 \\
& \text { for } k \text { in range }(n): \\
& \\
& \quad x=2 * * k \\
& \\
& s=s+x
\end{aligned}
$$

Output:

15

$$
1+2+4+8=15
$$

Let's derive this code. It's about adding up powers of two

Summation: How Do We Do It?

Let's add up powers of 2 ...

$$
\begin{aligned}
1 & =1 \\
3 & =1+2 \\
7 & =1+2+4 \\
15 & =1+2+4+8
\end{aligned}
$$

And so on

Summation

Let's add up powers of 2...

$$
\begin{array}{rlrl}
1 & =1 & 1 & =0+1 \\
3 & =1+2 & 3 & =1+2 \\
7 & =1+2+4 & 7 & =3+4 \\
15 & =1+2+4+8 & 15 & =7+8
\end{array}
$$

And so on
And so on

Nope! We keep a "running sum" into which we add powers of 2

Summation

$$
\begin{array}{ll}
s=0 & \\
\mathbf{x}=2 * * 0 & \\
s=s+x & 1=0+1 \\
\mathbf{x}=2 * * 1 & \\
s=s+x & 3=1+2 \\
\mathbf{x}=2 * * 2 & \\
s=s+\mathbf{x} & 7=3+4 \\
\mathbf{x}=2 * * * 3 & \\
s=s+x & 15=7+8
\end{array}
$$

Summation

$$
\begin{aligned}
& \mathbf{s}=0 \\
& \begin{array}{|l|}
\hline \mathbf{x}=\mathbf{2 * *} \\
\mathbf{s}=\mathbf{s}+\mathbf{x} \\
\hline \mathbf{x}=\mathbf{2 * * 1} \\
\mathbf{s}=\mathbf{s}+\mathbf{x} \\
\hline \mathbf{x}=\mathbf{2 * *} \\
\mathbf{s}=\mathbf{s + x} \\
\hline \mathbf{x}=\mathbf{2 * *} \\
\mathbf{s}=\mathbf{s}+\mathbf{x}
\end{array} \\
& \hline 1=0+1 \\
& \hline
\end{aligned}
$$

Note the pattern

Summation

$$
\begin{aligned}
& s=0 \\
& \hline x=2 * * 0 \\
& s=s+x \\
& \hline x=2 * * 1 \\
& s=s+x \\
& \hline x=2 * * 2 \\
& s=s+x \\
& \hline x=2 * * 3 \\
& s=s+x
\end{aligned}
$$

$$
\begin{aligned}
& s=0 \\
& \text { for } k \text { in range }(4): \\
& \qquad \begin{array}{l}
x=2 * * k \\
s=s+x
\end{array} \\
& \text { print } s
\end{aligned}
$$

Let's step through the mechanics of this for-loop

$$
1+2+4+8
$$

$$
s->0
$$

Initialize the running sum s.

$$
1+2+4+8
$$

$$
\begin{aligned}
& s=0 \\
& \text { for } k \text { in range (4): } \\
& \quad \begin{array}{l}
\mathrm{x}
\end{array}=2 * * \mathrm{k} \\
& \mathrm{~s}=\mathrm{s}+\mathrm{x}
\end{aligned}
$$

$$
\begin{array}{ccc}
s-> & 0 \\
k \rightarrow & 0
\end{array}
$$

print s

We enter the loop.
The loop variable \mathbf{k} is set to zero

$1+2+4+8$

$$
\begin{array}{lll}
s-> & 0 \\
k \rightarrow & 0
\end{array}
$$

$k<4$ is true so we execute the loop body with that value of \mathbf{k}.

$$
1+2+4+8
$$

$s=0$
for k in range (4):
$\mathbf{x}=2 * * k$

$$
s=s+x
$$

print s

$$
\begin{array}{ll|l}
s & -> & 1 \\
k & -> & 0 \\
x & -> & 1
\end{array}
$$

$$
1+2+4+8
$$

$$
\begin{aligned}
& s=0 \\
& \text { for } k \text { in range (4): } \\
& \qquad \begin{array}{l}
x=2 * * k \\
s
\end{array}=s+x
\end{aligned}
$$

print s
\mathbf{k} is increased by 1

$$
1+2+4+8
$$

$s=0$
for k in range (4):

$$
\begin{aligned}
& \mathbf{x}=2 * * k \\
& s=s+x
\end{aligned}
$$

print s

$$
\begin{array}{ll|l}
\text { s } & -> & 1 \\
\text { k } & -> & 1 \\
\text { x } & -> & 1
\end{array}
$$

$1+2+4+8$

$$
\begin{array}{ll|l}
s & -> & 1 \\
k & -> & 1 \\
x & -> & 1
\end{array}
$$

$\mathrm{k}<4$ is true so we execute the loop body with that value of \mathbf{k}.

$$
1+2+4+8
$$

$s=0$
for k in range (4):

$$
\begin{aligned}
& \mathbf{x}=2 * * k \\
& s=s+x
\end{aligned}
$$

print s

$$
\begin{array}{ll|l}
s & -> & 3 \\
k & -> & 1 \\
x & -> & 2
\end{array}
$$

$$
1+2+4+8
$$

$$
\begin{aligned}
& s=0 \\
& \text { for } k \text { in range }(4): \\
& \quad \begin{array}{l}
x=2 * * k \\
s
\end{array}=s+\mathbf{x}
\end{aligned}
$$

print s
k is increased by 1

$$
1+2+4+8
$$

$s=0$
for k in range (4):

$$
\begin{aligned}
& \mathbf{x}=2 * * k \\
& s=s+x
\end{aligned}
$$

print s

$$
\begin{array}{lll}
s & -> & 3 \\
k & -> & 2 \\
x & -> & 2
\end{array}
$$

$1+2+4+8$

$$
\begin{array}{ll|l}
s & -> & 3 \\
k & -> & 2 \\
x & -> & 2
\end{array}
$$

$\mathrm{k}<4$ is true so we execute the loop body with that value of \mathbf{k}.

$$
1+2+4+8
$$

$s=0$
for k in range (4):

$$
\begin{aligned}
& \mathbf{x}=2 * * k \\
& s=s+x
\end{aligned}
$$

print s

$$
\begin{array}{lll}
s & -> & 7 \\
k & -> & 2 \\
x & -> & 4
\end{array}
$$

$$
1+2+4+8
$$

$$
\begin{array}{lll}
s & -> & 7 \\
k & -> & 2 \\
x & -> & 4
\end{array}
$$

k is increased by 1

$$
1+2+4+8
$$

$s=0$
for k in range (4):
$x=2 * * k$ $s=s+x$
print s

$$
\begin{array}{lll}
s & -> & 7 \\
k & -> & 3 \\
x & -> & 4
\end{array}
$$

$1+2+4+8$

$$
\begin{array}{lll}
s & -> & 7 \\
k & -> & 3 \\
\mathbf{x} & -> & 4
\end{array}
$$

$\mathrm{k}<4$ is true so we execute the loop body with that value of \mathbf{k}.

$$
1+2+4+8
$$

$$
\begin{array}{cll}
\mathbf{s} & -> & 15 \\
\mathbf{k} & -> & 3 \\
\mathbf{x} & -> & 8
\end{array}
$$

$$
1+2+4+8
$$

k is increased by 1

$$
1+2+4+8
$$

$s=0$
for k in range (4):

$$
\begin{aligned}
& \mathbf{x}=2 * * \mathbf{k} \\
& s=s+\mathbf{x}
\end{aligned}
$$

print s

$$
\begin{array}{ll|l}
s & -> & 15 \\
k & -> & 4 \\
x & -> & 8
\end{array}
$$

$1+2+4+8$

$$
\begin{aligned}
& s=0 \\
& \text { for } k \text { in range }(4): \\
& \quad \begin{array}{l}
x=2 * * k \\
\\
s=s+x
\end{array}
\end{aligned}
$$

print s

$$
\begin{array}{cc|c}
s & -> & 15 \\
k & -> & 4 \\
\mathbf{x} & -> & 8
\end{array}
$$

$\mathrm{k}<4$ is False so we exit the loop body and proceed with the next statement after the loop.

$$
1+2+4+8
$$

$s=0$
for k in range (4):
$\quad x=2 * * k$
$s=s+x$
print s

$$
\begin{array}{cc|c}
s & -> & 15 \\
k & -> & 4 \\
x & -> & 8
\end{array}
$$

Output
15

> More General: $1+2+4+\ldots+2^{\star *}(n-1)$
$\mathrm{n}=$ any positive integer
$s=0$
for k in range(n):

$$
\begin{aligned}
& \mathbf{x}=2 * * k \\
& s=s+x
\end{aligned}
$$

print s

for-loop Mechanics with range

for k in range(n):

Loop Body

Let $k=0$ and then execute the loop body.
Let $k=1$ and then execute the loop body.
Let $k=2$ and then execute the loop body.
Let $k=n-1$ and then execute the loop body.

for-loop Mechanics with range

for k in range(n):

$$
\begin{aligned}
& \mathbf{x}=2 * * k \\
& s=s+x
\end{aligned}
$$

Let $k=0$ and then execute the loop body.
Let $k=1$ and then execute the loop body.
Let $k=2$ and then execute the loop body.
Let $k=n-1$ and then execute the loop body.

Counting:
 A Special Type of Summation

How Many Integers < 10**6 are there that are divisible by 2,3 , and 5 ?

$\mathrm{N}=0$

for k in range (10**6):
if $k \div 2==0$ and $k \div 3==0$ and $k \div 5==0$: $\mathrm{N}=\mathrm{N}+1$
print N

Output: 33334

Using a For-Loop to Enumerate all Possibilities

"Left-Shifting" a String

Output:

abcd
 bcda
 cdab
 dabc

If $\mathrm{k}==2$, then $\mathrm{s}[2:]+\mathrm{s}[: 2]$ looks like this: 'cd' + 'ab'

Looking for a Minimum

Assume this Function is Available

```
def dist(t):
```

""" Returns a float that is the distance between Earth and a rogue asteroid at time t (days).

PreC: t is a nonnegative float."""

Problem: Which of the numbers dist(0), dist(1), dist(2),..., dist(100000)
is the smallest and what is its value?

Solution

```
d_min = dist(0)
tmin}=
for t in range(100001):
                            d_current = dist(t)
                            if d_current < d_min:
                            # A new minimum is found
                d_min = d_current
                # Remember the day it occurred
                                t_min = t
print t_min, d_min
```


More on range

In all our examples, the loop variable steps from 0 to some number.

There are other options.

"Counting from 1"

$\mathrm{n}=4$
 for k in range(n): print k

print k

$$
n=4
$$

for k in range ($1, n$):

Output:

Output:

1
2
3

"Counting from Here to (Almost) There"

Here $=20$
There $=24$
for k in range (Here, There): print k

20
Output:
21
22
23

"Counting Down"

Here $=20$
There $=24$
for k in range (There,Here,-1): print k

24

Output:
23
22
21

Now Let Us Look at Functions and For Loops

Recall From SimpleMath

> def sqrt(x):
> x $=$ float (x)
> $\mathrm{L}=\mathrm{x}$
> $L=(L+x / L) / 2$
> return L

For-Loop Implementation

$$
\begin{aligned}
& \text { def } \text { sqrt }(x): \\
& x=f l o a t(x) \\
& L=x \\
& L=(L+x / L) / 2 \\
& \text { return } L
\end{aligned}
$$

def sqrt(x):
x = float (x)
$\mathrm{L}=\mathrm{x}$
for k in range (5):

$$
L=(L+x / L) / 2
$$

return L

Another For-Loop Implementation

def sqrt(x):
$\mathbf{x}=$ float (x)
$\mathrm{L}=\mathrm{x}$
for k in range (5):

$$
L=(L+x / L) / 2
$$

return L

$$
\begin{aligned}
& \text { def } \operatorname{sqrt}(x, N=5): \\
& \quad x=f l o a t(x) \\
& L=x \\
& \text { for } k \text { in range }(N): \\
& L=(L+x / L) / 2 \\
& \text { return } L
\end{aligned}
$$

Sample Call: $\quad y=\operatorname{sqrt}(12345,20)$

Now Let Us Look at
 Graphics Procedures and For Loops

Recall DrawRect

This will draw a red square with side s and center ($x c, y c$):

DrawRect(xc,yc,s,s,FillColor=RED)

This will draw a white square with side s and center ($x c, y c$):

DrawRect(xc,yc,s,s,FillColor=WHITE)

Let's Write a Procedure that Can Draw a Checkered Row

Assume n squares each with side s.

Assume $(x 0, y 0)$ is the center of the leftmost square.

Let c1 and c2 be the Colors of the first and second square

Solution

def DrawRow (x0,y0,s,n,c1,c2):
\# Center of next square is (xc,yc)
$\mathrm{xc}=\mathrm{x} 0, \mathrm{yc}=\mathrm{y} 0$
for k in range (n):
\% Draw the kth square
if $k \div 2==0$:
DrawRect (xc,yc,s,s,FillColor=c1) else:

DrawRect (xc,yc,s,s,FillColor=c2)
$\mathrm{xc}=\mathrm{xc}+\mathrm{s}$

Now Let's Draw This

This Draws an 8×8 Checker Board

$$
y^{0}=-4 ; x 0=-3.5 ; n=8 ; s=1
$$

\# ($x 0, y 0$) is the center of the leftmost
\# square in the next row to draw
for k in range (n):
\# Draw the kth row if $k \% 2==0$:

DrawRow (x0,y0,s,n,RED,WHITE) else:

DrawRow (x0,y0, s, n, WHITE , RED)
\# The next row is s units higher
$y^{0}=y^{0+s}$

