8. Iteration: Strings

Topics:

Using Methods from the string class
Iterating through a string with for

The Reverse String Problem

How does the for loop work?

Using for to Traverse a String Character-by-Character

$s=$ 'abcd'
for c in $s:$
print c

Output:
$\mathrm{s}=\mathrm{abcd}$ '
for c in s :
print c

In this example, the "for-loop" variable is c. One at a time, it takes on the value of each character in s.

Iterating Through a String

Two problems we cannot easily solve:

1. Given a string s, assign to t the "reversed" string. 'abcd' \rightarrow 'dcba'
2. Given a string s, how many digit characters does it contain? '1or2or3' $\rightarrow 3$

The Number-of-Digits Problem
$s={ }^{\prime} 2 \times 78 y^{\prime}$
s -> ' $2 \times 78 y^{\prime}$
$\mathrm{n}=0$
for c in s :
if c.isdigit():
n -> 3
$\mathrm{n}=\mathrm{n}+1$

How does the for loop work?

The Reverse String Problem

At the start of the loop, c is assigned the zeroth character in s.

The Reverse String Problem

The loop body is executed using that value in c.

The Reverse String Problem

$s=\quad$ 'abcd'
$t=\quad$ '
for c in $s:$
$t=c+t$
print t

The next time through the loop, c is assigned the first character in s.

The Reverse String Problem

The loop body is executed using that value in c.

The Reverse String Problem

The loop body is executed using that value in c.

The Reverse String Problem

s -> 'abcd'
$\mathrm{t}->$ 'ba'

The next time through the loop, c is assigned the second character in s.

The Reverse String Problem

The loop body is executed using that value in c.

The Reverse String Problem
$\mathrm{s}=\mathrm{y}$ 'abcd'
$t=\mathrm{\prime}$
for c in $s:$
$t=c+t$
print t

The last time through the loop, c is assigned the third character in s.

The Reverse String Problem

The loop body is executed using that value in c.

The Reverse String Problem

The loop body is executed using that value in c.

The Reverse String Problem

s -> 'abcd'
t -> 'dcba'

Output:
dcba

The string has been traversed. The iteration ends. The next statement after the loop is executed. Indentation important.

for-loop Mechanics
 for <loop variable> in <string>:

If the string has length n, then the loop body is executed n times.

Function for Reversing Strings

```
def Reverse (s):
    """ Returns a string that is obtained
    from s by reversing the order of its
    characters.
    Precondition: s is a string."""
    t = '' # The empty string
    for c in s:
        t = c+t # Repeated concatenation
    return t
```

for-loop Mechanics
for x in y :

Let $\mathrm{x}=\mathrm{y}[0]$ and then execute the loop body.
Let $x=y[1]$ and then execute the loop body.
Let $x=y[2]$ and then execute the loop body. etc
Let $x=y[n-1]$ and then execute the loop body.

The Number-of-Digits Problem

Given a string s, how many of its characters are digit characters?
${ }^{\prime}$ a10b20c30d40' $\rightarrow 8$

The Number-of-Digits Problem

At the start of the loop, \mathbf{x} is assigned the zeroth character in s.

The Number-of-Digits Problem
$s=02 z 78 y^{\prime}$
$\mathrm{n}=0$
for x in s :
if x.isdigit():
$\mathrm{n}=\mathrm{n}+1$
print n
$s->{ }^{\prime} 2 z 78 y^{\prime}$
n $\rightarrow 0$

The loop body is executed using that value in \mathbf{x}.

The loop body is executed using that value in \mathbf{x}.

The Number-of-Digits Problem

$s={ }^{\prime} 2 z 78 y^{\prime}$
$\mathrm{n}=0$
for x in s :
if $x . i s d i g i t():$
$\mathrm{n}=\mathrm{n}+1$
print n
s -> '2z78y'
n $->1$

The loop body is executed using that value in \mathbf{x}.

The Number-of-Digits Problem

The loop body is executed using that value in \mathbf{x}.

The Number-of-Digits Problem
$s={ }^{\prime} 2 z 78 y^{\prime}$
$n=0$
$\mathrm{n}=0$
s -> '2z78y'
for x in s :
n $->1$
$\mathrm{n}=\mathrm{n}+1$
print n

The next time through the loop, \mathbf{x} is assigned the first character in s.

The Number-of-Digits Problem

The next time through the loop, \mathbf{x} is assigned the second character in s.

The Number-of-Digits Problem
$s={ }^{\prime} 2 z 78 y^{\prime}$
$\mathrm{n}=0$
for x in s :
if x.isdigit() :
$\mathrm{n}=\mathrm{n}+1$
print n
s -> '2z78y'
n -> 2
-
'2z78y'
x -> '7'

The loop body is executed using that value in \mathbf{x}.

The Number-of-Digits Problem
$s={ }^{\prime} 2 z 78 y^{\prime}$
$\mathrm{n}=0$
s -> '2z78y'
for x in s :
if x.isdigit():
n $->2$
$n=n+1$
print n
$x->{ }^{\prime} 8^{\prime} \quad \begin{aligned} & \quad 2 \mathrm{z} 78 \mathrm{y}^{\prime} \\ & \mathrm{x}-\mathrm{l}\end{aligned}$

The next time through the loop, \mathbf{x} is assigned the third character in s.

The Number-of-Digits Problem
$s=\quad$ '2z78y'
$\mathrm{n}=0$
for x in s :
if x.isdigit():
$\mathrm{n}=\mathrm{n}+1$
print n
s -> '2z78y'
n $->3$
'2z78y'
x $->$ ' 8 '

The loop body is executed using that value in \mathbf{x}.

The Number-of-Digits Problem

The loop body is executed using that value in \mathbf{x}.

The Number-of-Digits Problem

s -> '2z78y'
n $->2$

The loop body is executed using that value in \mathbf{x}.

The Number-of-Digits Problem
$s=02 z 78 y^{\prime}$
$\mathrm{n}=0$
s -> '2z78y'
for x in s :
n $->3$
$n=n+1$
print n

$$
\begin{aligned}
& \quad 2 z 78 y^{\prime} \\
& x->\quad ' y^{\prime}
\end{aligned}
$$

The next time through the loop, \mathbf{x} is assigned the fourth character in s.

The Number-of-Digits Problem

```
s = '2z78y'
n = 0
for x in s:
    if x.isdigit():
        n=n+1
print n
```

s -> '2z78y'
n $->3$
Output:

The string has been traversed. The iteration ends. The next statement after the loop is executed. Indentation important.

```
    Function for Counting Digits
def nDigits (s) :
    """ Returns an int whose value is the
    number of digit characters that are in
    s.
    Precondition: s is a string."""
    n = 0;
    for c in s:
        # Increment n if c is a digit
        if c.isdigit():
            n=n+1
    return n
```

