1/22/2016

7.5tring Methods

Topics:
Methods and Data
More on Strings
Functions and Methods
The String Class

Data+ Functions Together

“The square root of nineis three."

The tone of this comment is that the
square root function can be applied to
numbers like nine.

"Three is nine's square root." A
The tone of this comment is that new
the number nine (like all numbers) el
comes equipped witha sqrt function. view

Methods

Aspecial kind of function that isvery important
to object-oriented programming is called a
method.

In this style of programming, there isa tight
coupling between structured data and the
methods that workwith that data.

Methods

Hard to appreciate the reasons for this coupling
between data and methods so early in the
course.

For now, wesettle on getting used to the
special notation that isassociated withthe
use of methods.

Wewill get into this topic using strings.

Three String Methods

count How many times does string t
occur ina string s?

find Where is the first occurrence of
string tina string s?

replace Inasirings replace all occurrences
of a string slwitha string s2.

Designing count asa Function

count How many times does string y
occur ina string x?

‘ITH-JFK-ITH' —>|
count (—-> 2
‘ITH' —

There will be others later in the course.

It would thenbeusedlike this: n= count (y,x)

1/22/2016

Designing count as a Method

Suppose
x = ‘ITH-JFK-ITH’
y = ‘ITH’

Instead of the usual function-call syntax
n = count(y,x)

wewillwrite
n = x.count(y)

Methods: The Notation

Here is the syntax associated with using
a string method:

nameof string | nameof method (argl,arg2,...)

Once again, the 'dot” notation

String Methods: count

>>> s =‘ITH-JFK-ITH'
>>> m = s.count (‘'ITH’)

String Methods: count

s> [z]rfu]|-lafr[x]|-[z]r]n]
012 34567 82910

m --> [:::]

>>> s =‘ITH-JFK-ITH'’
>>> m = s.count (‘LGA’)

s> [zfrfu]|-|s]r[x]-[z]z]n]
012 34567 8910

m --> [:::]

sl.count(s2) the number of occurrences of string s2in string sl

sl.count(s2) the number of occurrences of string s2in string sl

count
The Formal Definition

If s1 and s2 are strings, then
sl.count(s2)

returns an int value that isthe number of
occurrences of string s2 instring s1.

Using count: AnExample

Count the number of vowels..
A = ‘auric goldfinger’

n=0

n =n + A.count(‘a’)

n =n + A.count(‘e’)

n =n + A.count(‘i’

n =n + A.count(‘'o’)

n =n + A.count(‘'u’)

print n

Note, in general sl1.count (s2) isnot the same as s2.ocount (s1)

Illegal: n = A.count(‘a’ or e’ or ‘I’ or ‘o’ or ‘u’)

1/22/2016

Designing £ind asa Function

find Where is the first occurrence of
string y ina string x?

‘ITH-JFK-ITH' —>
find |—s 3
N7 >

Designing £ind as a Method

>>> s =‘ITH-JFK-ITH’
>>> idx = s.find (‘JFK’)

ad HEEIREIDER B EE
012 34567 8910

idx --> |I|

It would thenbeusedlike this: n = find(y,x)

sl.index(s2) the index of the first occurrence of string s2 instring s1

String Methods: £ind

>>> s =‘ITH-JFK-ITH’
>>> idx = s.find(‘RFK’)

s> [z]rfu]|-lafr[x]|-[z]r]n]
012 34567 82910

idx -->

sl.index(s2) evaluates to -1if there is no occurrence of s2 insl

find
The Formal Definition

If s1 and s2 are strings, then
sl.find(s2)

refurns an int value that isthe index of the
first occurrence of string s2 instring s1.

If there isno such occurrence, then the value -1
is returned.

Using £ind : Some Examples

s = ‘nine one one’
nl = s.find(‘one’)
n2 = s.find(‘two’)
n3 = s.find (' nine’)
nl -> 5 n2 -> -1 n3 -> -1

in : A Handy Boolean Device
If s1 and s2 are strings, then
sl in s2
is aboolean-valued expression.

True ifthere isaninstance of sl ins2.
False ifthere isNOT an instance of sl ins2.

1/22/2016

inversus £ind

These are equivalent:

»®
1]

sl in s2

»
]

s2.find(s1)>=0

Designing replace as a Function

replace Inastrings replace all occurrences

of a string slwitha string s2.

‘ITH-JFK-ITH' —>

‘ITH' —>| replace
27—

—> ‘??-JFK-??’

It would thenbeusedlike this: sNew = replace(s,sl,s2)

Designing replace asa Method

1]
]

‘one hundred and one’
s.replace(' ' ,’-=")

ct
I

s -> ‘one hundred and one’

t -> ‘one-hundred-and-one’

The replace Method

s
t

= ‘one hundred and one’

= s.replace(' ', ")

s -> ‘one hundred and one’

t -> ‘onehundredandone’

The null string
has length 0.

Replacing one character withanother

Replacing each blank with the “null string’

The replace Method

1]
|

‘one hundred and one’
s.replace('x’, '-"')

ct
I

The replace Method

s -> ‘one hundred and one’

t -> ‘one hundred and one’

‘one hundred and one’
s.replace(‘one’, ‘seven’)

S

t

-> ‘one hundred and one’

-> ‘seven hundred and seven’

No change if the character to be replicedis missing

Replacing one substring with another

1/22/2016

The replace Method

= ‘one hundred and one’
t = s.replace(‘two’,’seven’)

1]
|

s -> ‘one hundred and one’

t -> ‘one hundred and one’

No change if the designated substring is missing

replace
The Formal Definition

If s, sland s2 are strings, then
s.replace(sl,s2)

returns a copy of the string s inwhich every

non- overlapping occurrence of the string s1is

replaced by the string s2.

If s1isnot asubstring of s, then the refurned
stringis just a copy of s.

Using replace : Some Examples

s = ‘xxx’
tl
t2
t3 = s.replace(‘xx’,‘oo’)

s.replace('x’,‘o’)

s.replace(‘'xx’,‘o’)

tl -> ‘ooo’

t2 -> ‘ox'’

replace does Not Replace

s.replace(sl,s2) does hot change the value
of s.

Tt produces a copy of s withthe specified
replacements.

Youare allowed fo overwrite the “original” s
withthe its“updated” copy:

s = s.replace(sl,s2)

t3 -> ‘oox’

Illegal!

s = ‘abcdefgh’
s[5] = ‘x’

Strings are immutable. They cannot be
changed.

Haveto " livewith" thereplace function,
slicing, and concatenation

s
s

‘abcdefgh’
s[:5]+'x"+s[6:]

Quickly Review Some
Other String Methods

1/22/2016

The upper and 1lower Methods

s = ‘A2sh?’ s -> ‘A2sh?’
tl = s.upper () tl -> | ‘A2SH?’
t2 = s.lower() t2 -> | ra2sh?’

Some Boolean-Valued Methods

These methods return either True or False:

islower ()
isupper ()
isalnum()
isalpha()
isdigit()

Boolean-Valued Methods

s=‘ab3?’ | s=‘AbcD’ s=‘AB3’

s.islower ()| True False False

s.isupper ()| False False True

Boolean-Valued Methods

1237 ‘5a7’ ‘ab’ -2.3’
s.isalnum() True True True False
s.isalpha() False False True False
s.isdigit() True False False |False

Useful String Constants

alpha = string.letters

abcdefghi jklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ

Useful String Constants

specialChar = string.punctuation

PSS ()64, L/ i<=>20 [\]A_ {1}~

1/22/2016

Useful String Constants

TheDigits = string.digits

1234567890

The "Dot" Notation--Again

Wehave seen it withmodules and impor+t

math.py I

pi=3.1416

sqrt

math.sqrt
math.pi

The “folder metaphor.

The “dot” means “go inside
and get this"

stringisa "Special” Module

|digits = 101234567890’ |

I letters

= ‘abcdef etc

Ipunctuation ="1"#$ etc I

Icountl I

isupper I I isalnum

| £ind||is

lower | |isalpha |

I replace I

|isdigit |

The “folder"”
metaphor.

The “dot" means
“go insideand
get this"

string isactually
a“class". More
ina few lectures.

