
1/22/2016

1

7. String Methods

Topics:

 Methods and Data
 More on Strings
 Functions and Methods
 The String Class

Data + Functions Together

“The square root of nine is three.”

 The tone of this comment is that the
 square root function can be applied to
 numbers like nine.

“Three is nine’s square root.”

 The tone of this comment is that

 the number nine (like all numbers)

 comes equipped with a sqrt function.

A
new
point
of
view

Methods

A special kind of function that is very important

to object-oriented programming is called a

method.

In this style of programming, there is a tight

coupling between structured data and the

methods that work with that data.

Methods

Hard to appreciate the reasons for this coupling
between data and methods so early in the
course.

For now, we settle on getting used to the
special notation that is associated with the
use of methods.

We wi ll get into this topic using strings.

Three String Methods

count How many times does string t
 occur in a string s?

find Where is the first occurrence of
 string t in a string s?

replace In a string s replace all occurrences
 of a string s1 with a string s2.

There will be others later in the course.

Designing count as a Function

count How many times does string y
 occur in a string x?

 count

 ‘ITH-JFK-ITH’

 ‘ITH’
2

It would then be used like this: n = count(y,x)

1/22/2016

2

Designing count as a Method

Suppose
 x = ‘ITH-JFK-ITH’

 y = ‘ITH’

Instead of the usual function-call syntax

 n = count(y,x)

we wi ll write

 n = x.count(y)

Methods: The Notation

Here is the syntax associated with using
a string method:

name of string name of method (arg1,arg2,…)

Once again, the ‘dot” notation

String Methods: count

>>> s =‘ITH-JFK-ITH’

>>> m = s.count(‘ITH’)

 T H I T I F J K - H - s -->

 0 1 2 3 4 5 6 7 8 9 10

 m --> 2

s1.count(s2) the number of occurrences of string s2 in string s1

String Methods: count

>>> s =‘ITH-JFK-ITH’

>>> m = s.count(‘LGA’)

 T H I T I F J K - H - s -->

 0 1 2 3 4 5 6 7 8 9 10

 m --> 0

s1.count(s2) the number of occurrences of string s2 in string s1

count

 The Formal Definition

If s1 and s2 are strings, then

 s1.count(s2)

returns an int value that is the number of
occurrences of string s2 in string s1.

Note, in general s1.count(s2) is not the same as s2.count(s1)

Using count: An Example

Count the number of vowels…

A = ‘auric goldfinger’

n = 0

n = n + A.count(‘a’)

n = n + A.count(‘e’)

n = n + A.count(‘i’)

n = n + A.count(‘o’)

n = n + A.count(‘u’)

print n

Illegal: n = A.count(‘a’ or ‘e’ or ‘I’ or ‘o’ or ‘u’)

1/22/2016

3

Designing find as a Function

find Where is the first occurrence of
 string y in a string x?

 find

 ‘ITH-JFK-ITH’

 ‘-’
 3

It would then be used like this: n = find(y,x)

Designing find as a Method

>>> s =‘ITH-JFK-ITH’

>>> idx = s.find(‘JFK’)

 T H I T I F J K - H - s -->

 0 1 2 3 4 5 6 7 8 9 10

idx --> 4

s1.index(s2) the index of the first occurrence of string s2 in string s1

String Methods: find

>>> s =‘ITH-JFK-ITH’

>>> idx = s.find(‘RFK’)

 T H I T I F J K - H - s -->

 0 1 2 3 4 5 6 7 8 9 10

idx --> -1

s1.index(s2) evaluates to -1 if there is no occurrence of s2 in s1

find

 The Formal Definition

If s1 and s2 are strings, then

 s1.find(s2)

returns an int value that is the index of the
first occurrence of string s2 in string s1.

If there is no such occurrence, then the value -1
is returned.

Using find : Some Examples

s = ‘nine one one’

n1 = s.find(‘one’)

n2 = s.find(‘two’)

n3 = s.find(‘ nine’)

 -1 n2 -> 5 n1 -> n3 -> -1

in : A Handy Boolean Device

If s1 and s2 are strings, then

 s1 in s2

i s a boolean-valued expression.

True if there is an instance of s1 in s2.

False if there is NOT an instance of s1 in s2.

1/22/2016

4

in versus find

These are equivalent:

 x = s1 in s2

 x = s2.find(s1)>=0

Designing replace as a Function

replace In a string s replace all occurrences
 of a string s1 with a string s2.

replace

 ‘ITH-JFK-ITH’

 ‘ITH’ ‘??-JFK-??’

It would then be used like this: sNew = replace(s,s1,s2)

 ‘??’

Designing replace as a Method

s = ‘one hundred and one’

t = s.replace(‘ ’,’-’)

Replacing one character with another

‘one-hundred-and-one’ t ->

‘one hundred and one’ s ->

The replace Method

s = ‘one hundred and one’

t = s.replace(‘ ’,‘’)

Replacing each blank with the “null string”

‘onehundredandone’ t ->

‘one hundred and one’ s ->

The null string
has length 0.

The replace Method

s = ‘one hundred and one’

t = s.replace(‘x’,‘-’)

No change if the character to be replaced is missing

‘one hundred and one’ t ->

‘one hundred and one’ s ->

The replace Method

s = ‘one hundred and one’

t = s.replace(‘one’,‘seven’)

Replacing one substring with another

‘seven hundred and seven’ t ->

‘one hundred and one’ s ->

1/22/2016

5

The replace Method

s = ‘one hundred and one’

t = s.replace(‘two’,’seven’)

No change if the designated substring is missing

‘one hundred and one’ t ->

‘one hundred and one’ s ->

replace

 The Formal Definition

If s, s1 and s2 are strings, then

 s.replace(s1,s2)

returns a copy of the string s in which every
non- overlapping occurrence of the string s1 i s
replaced by the string s2.

If s1 i s not a substring of s, then the returned
string is just a copy of s.

Using replace : Some Examples

s = ‘xxx’

t1 = s.replace(‘x’,‘o’)

t2 = s.replace(‘xx’,‘o’)

t3 = s.replace(‘xx’,‘oo’)

‘ox’ t2 ->

‘ooo’ t1 ->

t3 -> ‘oox’

replace does Not Replace

s.replace(s1,s2) does not change the value
of s.

It produces a copy of s w ith the specified
replacements.

You are allowed to overwrite the “original” s
with the its “updated” copy:

 s = s.replace(s1,s2)

Illegal!

s = ‘abcdefgh’

s = s[:5]+’x’+s[6:]

Strings are immutable. They cannot be
changed.

Have to ``live with’ ’ the replace function,
slicing, and concatenation

s = ‘abcdefgh’

s[5] = ‘x’

Quickly Review Some
Other String Methods

1/22/2016

6

The upper and lower Methods

 s = ‘A2sh?’

 t1 = s.upper()

 t2 = s.lower()

‘A2sh?’ s ->

‘A2SH?’

‘a2sh?’

t1 ->

t2 ->

Some Boolean-Valued Methods

These methods return either True or False:

 islower()

 isupper()

 isalnum()

 isalpha()

 isdigit()

Boolean-Valued Methods

 s=‘ab3?’ s=‘AbcD’ s=‘AB3’

s.islower() True False False

s.isupper() False False True

Boolean-Valued Methods

 ‘23’ ‘5a7’ ‘ab’ ‘-2.3’

s.isalnum() True True True False

s.isalpha() False False True False

s.isdigit() True False False False

Useful String Constants

 alpha = string.letters

 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

Useful String Constants

 specialChar = string.punctuation

 !"#$%&'()*+,./:;<=>?@[\]^_`{|}~

1/22/2016

7

Useful String Constants

 TheDigits = string.digits

 1234567890

The “Dot” Notation--Again

We have seen it with modules and import

 math.sqrt
 math.pi

 math.py

sqrt

pi=3.1416 The “folder metaphor.

The “dot” means “go inside
and get this”

string is a “Special” Module

 “string.py”

count

digits = ‘01234567890’
The “folder”
metaphor.

The “dot” means
“go inside and
get this”

letters = ‘abcdef etc

punctuation =‘!"#$ etc

find

replace

isupper

islower

isdigit

isalpha

isalnum

string is actually
a “class”. More
in a few lectures.

