
1/21/2016

1

1. The Assignment Statement
and Types

 Topics:

 Python’s Interactive Mode
 Variables
 Expressions
 Assignment
 Strings, Ints, and Floats

The Python Interactive Shell

Python can be used in a way that reminds
you of a calculator. In the ``command shell
of your system simply type

python

and you will be met with a prompt…

>>>

Let’s Compute the Area of a
Circle Using Python

>>> r = 10

>>> A = 3.14*r*r

>>> print A

314.0

Programming vs Math

>>> r = 10

>>> A = 3.14*r*r

>>> print A

314.0

Notation is different.

In Python, you can’t say A = 3.14xrxr

Programming vs Math

>>> r = 10

>>> A = 3.14*r**2

>>> print A

314.0

Notation is different.

In Python you indicate exponentiation with **

Programming vs Math

>>> r = 10

>>> A = 3.14*r**2

>>> print A

314.0

r and A are variables. In algebra, we have

the notion of a variable too. But there are
some big differences.

1/21/2016

2

Variables

A variable is a named memory location. Think of a
variable as a box.

It contains a value. Think of the value as the
contents of the box.

>>> r = 10

>>> A = 3.14*r**2

r -> 10 314.0 A ->

“ The value of r is 10. The value of A is 314.0.”

The Assignment Statement

The “= “ symbol indicates assignment.

The assignment statement r = 10 creates the
variable r and assigns to it the value of 10.

>>> r = 10

r -> 10

 Formal: “ r is assigned the value of 10” Informal: “r gets 10”

The Assignment Statement

A variable can be used in an expression like

 3.14*r**2.

The expression is evaluated and then stored.

>>> r = 10

>>> A = 3.14*r**2

r -> 10

Assignment Statement: WHERE TO PUT IT = RECIPE FOR A VALUE

A -> 314.0

Order is Important

Math is less fussy:

 A = 3.14*r**2 where r = 10

>>> A = 3.14*r**2

>>> r = 10

NameError: name ‘r’ is not defined

Assignment vs. “Is Equal to”

In Math “=“ is used to say what is on the left
equals what is on the right.

In Python, “=“ prescribes an action, “evaluate
the expression on the right and assign its
value to the variable named on the left.”

>>> r = 10

>>> 3.14*r**2 = A

SyntaxError: can’t assign to an

operator

The Assignment Statement

Here we are assigning to S the area of a

semicircle that has radius 10.

>>> r = 10

>>> A = 3.14*r**2

>>> S = A/2

r -> 10

Assignment Statement: WHERE TO PUT IT = RECIPE FOR A VALUE

A -> 314.0

 157.0 S ->

1/21/2016

3

The Assignment Statement

Here we are assigning to A the area of a
semicircle that has radius 10.

No new rules in the third assignment. The “recipe”
is A/2. The target of the assignment is A.

>>> r = 10

>>> A = 3.14*r**2

>>> A = A/2

r -> 10

“A has been overwritten by A/2”

A -> 157.0

Tracking Updates

>>> y = 100
 Before:

Tracking Updates

>>> y = 100

y -> 100

After:

Tracking Updates

>>> y = 100

>>> t = 10

y -> 100

Before:

Tracking Updates

>>> y = 100

>>> t = 10

y -> 100

t -> 10

After:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

y -> 100

t -> 10

Before:

1/21/2016

4

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

y -> 110

t -> 10

After:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10

y -> 110

t -> 10

Before:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10

y -> 110

t -> 20

After:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10;

>>> y = y+t

y -> 110

t -> 20

Before:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10;

>>> y = y+t

y -> 130

t -> 20

After:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10

>>> y = y+t

>>> t = t+10

y -> 130

t -> 20

Before:

1/21/2016

5

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10

>>> y = y+t

>>> t = t+10

y -> 130

t -> 30

After:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10

>>> y = y+t

>>> t = t+10

>>> y = y+t

y -> 130

t -> 30

Before:

Tracking Updates

>>> y = 100

>>> t = 10

>>> y = y+t

>>> t = t+10

>>> y = y+t

>>> t = t+10

>>> y = y+t

y -> 160

t -> 30

After:

Assignment vs Equations

In algebra,
 t = t +10

doesn’t make sense unless you believe

 0 =t-t = 10

In Python,
 t = t + 10

means add 10 to the value of t and store
the result in t.

The Key 2-Step Action Behind
Every Assignment Statement

1. Evaluate the expression on the right hand
 side.

2. Store the result in the variable named on the
 left hand side.

< variable name > = < expression >

Naming Variables

Rule 1. Name must be comprised of digits, upper
case letters, lower case letters, and the
underscore character “_”

Rule 2. Must begin with a letter or underscore

>>> radius = 10

>>> Area = 3.14*radius**2

radius -> 10 Area -> 314.0

A good name for a variable is short but suggestive of its role: Circle_Area

1/21/2016

6

Precedence
Q. In an arithmetic expression, what is

 the order of evaluation?
A. Exponentiation & negation comes before

 multiplication & division which in turn
 come before addition & subtraction.

It is a good habit to use parentheses if there is the slightest ambiguity.

This: Is the same as:
 A + B*C A + (B*C)

 -A**2/4 -(A**2)/4

 A*B/C*D ((A*B)/C)*D

Revisit Circle Area

It seems that Python evaluates (22/7) as
3 instead of 3.142… WHY?

>>> r = 10

>>> A = (22/7)*r**2

>>> print A

300.0

A different kind of arithmetic. We have a related experience here.
11+3 = 2 in “clock arithmetic”

Integers and Decimals

In math we distinguish between integer
numbers and decimal numbers.

Integer Numbers:

 100, 0,-89, 1234567

Decimal Numbers:

 -2.1, 100.01, 100.0, 12.345

Integers and Decimals

There are different kinds of division.

Integer Division:

 30/8 is 3 with a remainder of 6

Decimal Division:
 30/8 is 3.75

int vs float

In Python, a number has a type.

The int type represents numbers as

integers.

The float type represents numbers as

decimals.

Important to understand the differences and the interactions

int Arithmetic

To get the remainder, use %. Python “knows” that the values stored in x and y have
type int because there are no decimal points in those assignments.

>>> x = 30

>>> y = 8

>>> q = x/y

>>> print q

3

>>> r = x%y

>>> print r

6

1/21/2016

7

float Arithmetic

Python “knows” that the values stored in x and y have type float because there are
decimal points in those assignments.

>>> x = 30.

>>> y = 8.

>>> q = x/y

>>> print q

3.75

Mixing float and int

In Python if one operand has type float and the other has type int, then the type
int value is converted to float and the evaluation proceeds.

>>> x = 30.

>>> y = 8

>>> q = x/y

>>> print q

3.75

Explicit Type Conversion

 int(-expression-) converts the value of the expression to int value

>>> x = 30.0

>>> y = 8.0

>>> q = int(x)/int(y)

>>> print q

3

Explicit Type Conversion

 float(-expression-) converts the value of the expression to a float

>>> x = 30

>>> y = 8

>>> q = float(x)/float(y)

>>> print q

3.75

An Important Distinction

>>> x = 1.0/3.0

>>> print x

.333333333333

Integer arithmetic is exact.

Float arithmetic is (usually) not exact.

Strings

So far we have discussed computation with

numbers.

Now we discuss computation with text.

We use strings to represent text.

 You are a “string processor” when you realize 7/4 means July 4 and not 1.75!

1/21/2016

8

Strings

Strings are quoted characters. Here are three

examples:

>>> s1 = ‘abc’

>>> s2 = ‘ABC’

>>> s3 = ‘ A B C ‘

 s1, s2, and s3 are variables with string value.

Strings

Strings are quoted characters. Here are three

examples:

>>> s1 = ‘abc’

>>> s2 = ‘ABC’

>>> s3 = ‘ A B C ‘

The values in s1,s2,and s3 are all different.

Upper and lower case matters. Blanks matter

Strings

Nothing special about letters…

>>> Digits = ‘1234567890’

>>> Punctuation = ‘!:;.?’

>>> Special = @#$%^&*()_-+=‘

 Basically any keystroke but there are some

exceptions and special rules. More later.

 Here is one: ‘Sophie”’”s Choice’ i.e., Sophie’s Choice

Strings are Indexed

 >>> s = ‘The Beatles’

The characters in a string can be referenced

through their indices. Called “subscripting”.

 Subcripting from zero creates a disconnect: ‘T’ is not the first character.

 e s T h l e B a e t s -->

 0 1 2 3 4 5 6 7 8 9 10

Strings are Indexed

>>> s =‘The Beatles’

>>> t = s[4]

 The square bracket notation is used. Note, a single character is a string.

 e s T h l e B a e t s -->

 0 1 2 3 4 5 6 7 8 9 10

t --> B

 0

String Slicing

>>> s =‘The Beatles’

>>> t = s[4:8]

 We say that “t is a slice of s”.

 e s T h l e B a e t s -->

 0 1 2 3 4 5 6 7 8 9 10

t --> B

 0 1 2 3

 e a t

1/21/2016

9

String Slicing

>>> s =‘The Beatles’

>>> t = s[4:]

Same as s[4:11]. Handy notation when you want an “ending slice.”

 e s T h l e B a e t s -->

 0 1 2 3 4 5 6 7 8 9 10

t --> B

 0 1 2 3 4 5 6

 e a t l e s

String Slicing

>>> s =‘The Beatles’

>>> t = s[:4]

 e s T h l e B a e t s -->

 0 1 2 3 4 5 6 7 8 9 10

t --> T

 0 1 2 3

 h e

Same as s[0:4]. Handy notation when you want a “beginning slice”.

String Slicing

>>> s =‘The Beatles’

>>> t = s[11]

IndexError: string index out of

range

 e s T h l e B a e t s -->

 0 1 2 3 4 5 6 7 8 9 10

Subscripting errors are EXTREMELY common.

The is no s[11]. An illegal to access.

String Slicing

>>> s =‘The Beatles’

>>> t = s[8:20]

 e s T h l e B a e t s -->

 0 1 2 3 4 5 6 7 8 9 10

t --> l

 0 1 2

 e s

It is “OK” to shoot beyond the end of the source string.

Strings Can Be Combined

 e s T h l e B a e t s -->

Concatenation is the string analog of addition except
s1+s2 and s2+s1 are different.

>>> s1 = ‘The’

>>> s2 = ‘Beatles’

>>> s = s1+s2

This is called concatenation.

Concatenation

 e s T h l e B a e t s -->

No limit to the number of input strings: s = s2+s2+s2+s2+s2

>>> s1 = ‘The’

>>> s2 = ‘Beatles’

>>> s = s1 + ‘ ‘ + s2

We “added” in a blank.

1/21/2016

10

Types

Strings are a type: str

So at this point we introduced 3 types:

 int for integers, e.g., -12

 float for decimals, e.g., 9.12, -12.0

 str for strings, e.g., ‘abc’, ’12.0’

Python has other built-in types. And we will learn to make up our own types.

A Type is a Set of Values and
Operations on Them

 int 123, -123, 0

 float 1.0, -.00123, -12.3e-5

 str ‘abcde’, ‘123.0’

Values…

The “e” notation (a power-of-10 notation) is handy for very large or very small
floats. The literals -.00123 and -12.3e-5 are the same number.

These are called “literals”

A Type is a Set of Values and
Operations on Them

 int + - * / unary- ** %

 float + - * / unary- **

 str +

concatenation

Operations…

Type Conversion

A string that encodes a decimal value can be

represented as a float.

>>> s = ‘123.45’

>>> x = 2*float(s)

>>> print x

246.90

Type Conversion

A string that encodes an integer value can

be represented as an int.

>>> s = ‘-123’

>>> x = 2*int(s)

>>> print x

-246

Type Conversion

Shows how to get a string encoding of a

float value.

>>> x = -123.45

>>> s = str(x)

>>> print s

‘-123.45’

1/21/2016

11

Automatic Type Conversion

>>> x = 1/2.0

>>> y = 2*x

An operation between a float and an int
results in a float. So x is a float.

Thus, y is also a float even though its value

happens to be an integer.

Python is a Dynamically Typed
Language

>>> x = ‘abcde’

>>> x = 1.0

>>> x = 32

A variable can hold different types of

values at different times.

In other languages the type of a variable is fixed.

Summary

1. Variables house values that can be

accessed.

2. Assignment statements assign values to

variables.

3. Numerical data can be represented

using the int and float types.

4.Text data can be represented using the

str type.

