CS1110 Spring 2016
Assignment 4: Due Friday Mar 11 at 6pm

You must work either on your own or with one partner. If you work with a partner, you and your partner must
first register as a group in CMS (this requires an invitation issued by one of you on CMS and the other of you
accepting it on CMS) and then submit your work as a group.

You may discuss background issues and general solution strategies with others, but the programs you submit
must be the work of just you (and your partner). We assume that you are thoroughly familiar with the discussion
of academic integrity that is on the course website. Any doubts that you have about “crossing the line” should be
discussed with a member of the teaching staff before the deadline, and you should also document such situation as a
comment in the header of your submission file(s).

Topics. Iteration with for and while. Using randint. Random walks. Estimating averages. The assignment is
based on lectures through March 3 and Lab 5. The March 3 demo ShowRandomWalk.py is particularly relevant.

1 Background

This assignment is about random walks on a “honeycomb” that is made up of hexagonal cells. You will
write code that simulates a bee that starts at the center of the honeycomb and then randomly hops from cell
to cell until he/she “escapes” by landing on a cell that is entirely outside a given circle. The Drones have
smart phones with GPS, so their meanderings are somewhat directed:

II)_raquoney(;omp(lS)

T SO el
5900085 0=0u0y000500
8202005002520
2020%020262620 0208

II)_raquoney(;omp(lS)

T SO el
8900085 0=0u0y000n00
8202005052520
2025%0%02585%5 3808

(The blue dot means that the Bee visited that cell at least once on its journey.) On the other hand, the
Worker bees are without GPS. Thus deprived, their meanderings are much more random and as a result,
they take longer to escape:

II)_raquoney(;omp(lS)

DrawHoneyComb(15)
e EEE D) OEOECEOE e
090908 9505ua9e

00T 050X0X0T0T00:
090968 9505ua990909

0908020260000 90080 0908020260000 90080
6900580908380852690 09030809020800020!

By simulating hundreds of escapes, you will be able answer questions like these:

For a honeycomb of a given size, how long does it take (on average) for a Drone to escape?
For a honeycomb of a given size, how long does it take (on average) for a Worker to escape?

To get started we talk about “honeycomb geometry” and how to use what is in the module HexTools.py
that we provide. This module and everything else you need is in A4.zip.

1.1 Hex-cells

A regular hexagon is a polygon with six equal sides. We define a hex-cell to be a regular hexagon with
sides that have unit length. The procedure DrawHexCell can be used to situate a hex-cell anywhere in the
window:

DrawHexCell(0,0,FillColor=YELLOW)

2

-1

The “dot” islocated at the center of the displayed hex-cell. The Application Script in HexTools. py illustrates
how to use DrawHexCell. Do not spend any time worrying about how this graphics procedure works. Just
read its doc-string specification and know how to use it.

1.2 Honeycombs

We can tile a 2m-by-2m square with hex-cells like this:

DrawHoneyComb(10)

|
& L i
Bb b LbbLlbblonvuwauvounobd

0-9-8-7-6-5-4-3-2-10 12 3 456 7 8 9 1

We refer to this as a size-m honeycomb. Here are some facts and definitions:

e The highlighted cell in the middle is centered at (0,0) and will be called the center cell.

The honeycomb circle has radius r = m — 2 and is centered at (0,0).

A cell that is entirely outside the honeycomb circle is called an outside cell.

A cell with center (z,y) is an outside cell if \/22+ 32 > r+ 1.

The module HexTools.py has a procedure DrawHoneycomb that can be used to draw a size-m honeycomb
together with the associated honeycomb circle. The Application Script in HexTools.py gives examples that
use DrawHoneycomb. Do not spend any time worrying about how this graphics procedure works. Just read
its doc-string specification and know how to use it.

1.3 The Neighbors of a Hex-cell

A given hex-cell with center (a,b) has six neighbors which we index 1 through 6:

For your information, if we set §; = 3/2 and 2 = v/3/2, then the centers of the six neighbors of the hex-cell
at (a,b) are given in the following table:

Neighbor Center
(CL, b+ 252)
(a+01,b+ 6)
(a+01,b—d2)
(CL, b— 252)
(CL - 51, b— 52)
6 (CL — 51, b + 52)

We supply a function in HexTools.py that makes it easy to compute these centers:

T W N

def NeighborCenter(a,b,i):
""" Returns floats u and v with the property that
(u,v) is the center of neighbor i.

PreC: a and b are floats, (a,b) is the center of a hex-cell, and
i is an int that satisfies 1<=i<=6.

This is our first example of a function that returns more than one value. Here is how one might use such a
function:

from SimpleGraphics import *

from HexTools import *

MakeWindow(10,bgcolor=WHITE,labels=True)

x =3

y =4

j=5

DrawHexCell(x,y,FillColor=YELLOW) # Draw a yellow hex-cell centered at (3,4)
f,g = NeighborCenter(x,y,]j) # (f,g) is the center of neighbor 5.
DrawHexCell (f,g,FillColor=CYAN) # Draw neighbor 5 and color it cyan
ShowWindow ()

Notice that the two output destinations in the line calling NeighborCenter are separated with a comma.
Take a look at the procedure DrawNeighbors that is part of the given module HexTools.py. It draws
all six neighbors of a given hex-cell. Check out the Application Script where it is used.

2 Getting Set Up

We provide you with a skeleton module MyHive.py, the essence of which we reproduce right here:

from SimpleGraphics import *
from random import randint as randi
from HexTools import *

def ShowBeeline(B):
pass

def MakeBeeline(m,GPS):
pass

def Dist(x,y):
pass

def AveBeeline(m,GPS,Nmax) :
pass

if name == ’__main__"’:

some debugging help follows

The Application Script is set up to help you debug ShowBeeline, a graphics procedure that depicts the
cells that were visited by an escaped bee. After that procedure is working, you will develop the function
MakeBeeline that returns a string that encodes all the hop directions associated with the bee’s journey to
freedom. It will be handy to have a function Dist that computes the bee’s distance to the origin (0,0).
Finally, you will implement a function AveBeeline that can be used to estimate the average number of hops
that it takes a bee to for escape a honeycomb of given size.

3 Beelines and Their Display

A beeline string is made up of the characters from ’123456z°. Here is an example:
B = ’3z432z224222z32242zz3’

A beeline string encodes what the bee does at every step in its journey. A digit means that the bee moved
to a neighbor tile. Thus, because B[4] is *2’, we know that the bee’s fourth hop was from its current cell
to neighbor 2 of the current cell. A >z’ means that the bee stayed put. Thus, because B[5] is >z’ we know
that the bee’s fifth hop was basically a “hop in place”— the bee did not move. Here is a complete “decoding”
of the above beeline string together with a marked up honeycomb showing the cells that were visited:

(Start at center cell)

Move to neighbor 3] _ DraV\(HoneyComb(IE?)
Stay put.

Move to neighbor 4
Move to neighbor 3
Move to neighbor 2
Stay put

Move to neighbor 2
Stay put

Move to neighbor 4
Move to neighbor 2
Stay put

Move to neighbor 2
Stay put

Move to neighbor 3
Stay put

Move to neighbor 2
Move to neighbor 4
Stay put

Stay put

Move to neighbor 3
(Escaped)

BT a T aTaT s et at
3958085 0~000,0,8,0,
02020 slalele
2005%095955585 76869,

970 a9
Geocsosssesssess
9330020 a%a a0

Note: you cannot tell from the honeycomb graphic where the “stay puts” are located. Nor can you deduce
if a marked cell was visited more than once.

Implement the function ShowBeeline(B) so that it puts a blue dot on every cell that is visited on the
escape journey defined by the beeline string B. ShowBeeline has two preconditions:

1. A size-m honeycomb has been added to the current plot window for some integer m.

2. The escape route encoded in B is a escape from a size-m honeycomb.
Here are some requirements and hints:

e Use DrawDisk for the blue dots. Set the radius to 0.3.

e Define a pair of variables that will keep track of the = and y location of the bee as the simulation
progresses.

e Use a for loop that ”walks down” the input string B. As it does this, use NeighborCenter to determine
the coordinates of the “next stop” and update the xy location variables accordingly.

The given MyHive.py module has been set up with an Application Script that checks to see what your
implementation of ShowBeeline does with a pair of beeline string examples. Both those examples should
result in the hopping pattern shown above.

4 Making a Beeline String

We now turn our attention to the simulation of the honeycomb random walk. We need rules that determine
just how the bee hops from cell to cell. In particular, how does the bee figure out whether to stay put or
whether to hop to a neighbor cell? And in the latter case, how is the neighbor cell selected? The rules are
different for Workers and Drones.

4.1 The Workers Use a “No-GPS” Rule
Assume that a Worker bee is currently situated at (a, b), the center of some hex-cell in the honeycomb. The

Worker does this:

e It rolls a (tiny, bee-sized) die: i = randi(1,6). (Assume the line from random import randint as
randi occurred previously)

e It moves to the center of neighbor ¢. (Hint: Update a and b so that (a,b) specifies the Worker’s new
location. Make use of NeighborCenter.)

We will call this the “No-GPS” rule because the hops are totally random. Without a GPS the Worker has
no idea that some hop directions are better than others.

4.2 The Drones Use a “GPS” Rule

Assume that a Drone is currently situated at (a, b), the center of some hex-cell in the honeycomb. The Drone
does this:

e It rolls a (tiny, bee-sized) die: i = randi(1,6).

e It moves to the center of neighbor ¢ if that increases its distance from (0,0). Otherwise, it stays put.
(Hint: Update a and b so that (a,b) specifies the Drone’s new location. Make use of NeighborCenter.)

We will call this the “GPS” rule because it pays attention to destination. The Drone is trying to reach an
outside hex-cell and never makes a move unless there is progress in that regard. That means that the Drone
doesn’t make a move to neighbor 7 unless the distance from that hex-cell to (0,0) is greater than the Drone’s
current distance to (0,0).

4.3 The Random Walk
We are now in a position to describe informally the random walk:

The bee starts at (0,0) and decides on a hopping rule (GPS or No-GPS)
While the bee is not on an outside cell it repeats this:
It rolls a die.

Following the chosen hopping rule, it either moves to a neighbor cell or it stays put.

The definition of an outside cell is given in §1.2. Implement a function MakeBeeline (m,GPS) that carries
out this simulation. Details:

e m is a positive int that specifies the size of the honeycomb. We don’t want ridiculously small honey-
combs so let’s insist that m is 3 or larger.

e GPS should be True if the GPS hopping rule is used and False if the No-GPS hopping rule is used.

e The function should return a beeline string that encodes the bee’s escape journey. Beeline strings are
defined in §3.

You will need variables that keep track of the bee’s x and y coordinates and a variable where the beeline
string is built up through repeated concatenation.

A good debugging strategy would be to modify the Application Script so that it prints out the beeline
string produced by MakeBeeline and then uses ShowBeeline to display the resulting escape route. Use a
suitably small value for m. Don’t forget to test both hopping rules.

Things are simplified if you implement (and use) a function Dist(x,y) that returns \/z2 + y2, the
distance from (z,y) to (0,0). To force issues we require that you implement this function and make effective
use of it in your implementation of MakeBeeline.

5 Computing Average Time to Escape

We are interested in how long it takes (on average) for a bee to escape a size-m honey comb. Towards that
end implement the following function:

def AveBeeline(m,GPS,Nmax):
""" Returns a float that estimates the average length of a Beeline string.
The average is based on Nmax trials. If GPS is True then the GPS hopping rule
is used. Otherwise the non-GPS hopping rule is used.

Pre: m is a positive integer that satisfies m>=3.
nnn

Finally, change the Application Script so that all it does is it prints out a table like this:

Averages with Averages with
m GPS Hopping No-GPS Hopping

10 12.5 29.4
20 27.9 110.0
30 45.2 274.1
40 64.0 514.8
50 80.5 791.3
60 97.2 1160.4
70 113.8 1415.4
80 133.1 2257.0
90 161.4 2748 .4
100 167 .4 3357.5

(Averages based on 100 trials)

To say that the number of trials is 100 is to say that each average was computed by running 100 random walks
and then averaging the number of hops. Do not forget that with GPS hopping an in-place hop (signaled by
a ’z’) counts as a hop.

6 Submission to CMS

You have one file to upload: MyHive.py. It should have implementations of the functions ShowBeeline,
MakeBeeline, Dist, and AveBeeline. Set up the Application Script so that when we run MyHive.py it
produces a table like the one above. In particular, it should report approximate averages that are based on
100 trials.

1. Make sure your submitted .py files begin with the header comments listing:

(a) The name of the file
(b) The name(s) and netid(s) of the person or group submitting the file
(¢) The date the file was finished

If there were other people who contributed to your thought processes in developing your code, it is a
courtesy to mention them by name in a header comment as well.

2. Make sure all your functions have appropriate docstrings. These should include explanations of what
the parameter variables “mean” and what preconditions (constraints) are assumed on their values, and
what the user can expect as a result of calling your functions.

3. Do not hit “reload” on the CMS assignment submission page after the submission deadline passes: this
will trigger another upload of your files, which can result in your submission being counted as late.

4. If you submit earlier than two hours before the submission deadline, CMS allows you to download
your files to check that they are what you think you submitted. We thus strongly suggest that you
submit a version early and do this check. (If you want to make changes, no problem: CMS allows you
to overwrite an older version by uploading a new version.)

