
CS 1110, LAB 4: ASSIGNMENT 1
http://www.cs.cornell.edu/courses/cs1110/2016fa/labs/lab04/

First Name: Last Name: NetID:

Today’s lab is an open office hour to work on Assignment 1. Take advantage of it to get whatever
last minute help that you might need. From the past three labs, you should have most of what you
need to work on this assignment.

The only thing new in Assigment 1 is the test script. You are welcome to try to figure this out
on your own. However, if you are struggling with the test script, we have a few activities in this lab
to help you along. All of these activities are optional and are not required to get credit on the
lab. We are just trying to make sure that you get as much help as possible.

Getting Credit for the Lab. Because you are working on the assignment, you will receive full
credit for this lab if you turn in the assignment on time (e.g. Sunday before midnight). There is
nothing else to show to you instructor. You do not even need to swipe your card this time.

There is no online component for this lab. The web service will indicate that you completed lab
if you submit the assignment on time. If you do decide to complete the optional exercise, you may
show that to your instructor to check that it is correct.

Lab Materials (OPTIONAL)

If you do want to work on the optional exercises, there are some files for you download. You can
get all of these files from the Labs section of the course web page.

http://www.cs.cornell.edu/courses/cs1110/2016fa/labs

For today’s lab you will notice two files.

• funcs.py (a module with some questionable functions)

• lab04.py (a testing script)

You should create a new directory on your hard drive and download all of the files into that
directory. Alternatively, you can get all of the files bundled in a single ZIP file called lab04.zip
from the Labs section of the course web page. On both Windows and OS X, you can turn a ZIP
file into a folder by double clicking on it. However, Windows has a weird way of dealing with ZIP
files, so Windows users will need to drag the folder contents to another folder before using them.

Course authors: D. Gries, L. Lee, S. Marschner, W. White
1

http://www.cs.cornell.edu/courses/cs1110/2016fa/labs/lab04/
http://www.cs.cornell.edu/courses/cs1110/2016fa/labs


1. Working with a Test Script (OPTIONAL)

In the previous lab, you tested your function by typing a few examples into Python using the
interactive mode. This works if you only have one or two simple functions. For more complex
software, you need to learn how to automate the process using a script.

As we saw in the second lab, a script looks like a Python module, except that we do not import
scripts. We run them directly from the command line. The file lab04.py is a script. To run this
file, navigate the command line to the folder with this file, but do not start Python (yet).
When you are in the right folder, type the following:

python lab04.py

What did the script print to the screen when you ran it?

Now open up lab04.py in Komodo Edit. As with the test script in class you will notice two
things: a test procedure and the script code. A test procedure is a function that uses the
cornelltest module to test other functions. The script code contains a call to this test procedure,
as the procedure cannot do any testing if you do not call it.

Actually, the test procedure test_asserts does not actually test another function. It is just a
random collection of assert functions to show you what you can do with the cornelltestmodule. In
particular, you will see the three functions assert_equals, assert_true, and assert_floats_equal.

For right now, we are going to focus on assert_equals, which is the most important of the three.
This function compares the answer that you expect (a value) with the answer that you compute
(an expression) and makes sure that they are the same. If they are the same then nothing happens.
Otherwise, the function will quit Python and inform you that there is a problem.

Let us see what happens when something unexpected is received. Inside of the test procedure
test_asserts, uncomment the line

cornelltest.assert_equals('b c', 'ab cd'[1:3])

Run lab04.py as a script again. You will see answers to three important debugging questions:

• What was (supposedly) expected?

• What was received?

• Which line caused cornelltest.assert_equals to fail?

What are the answers to three questions above?

2



Add the comment back to that line so that it is no longer executed (and so there is no error).
Then uncomment the line at the end of the test procedure:

cornelltest.assert_equals(6.3, 3.1+3.2)

Run the script one last time and look it what happens. Based on the result, explain when you
should use cornelltest.assert_floats_equal instead of cornelltest.assert_equals:

Recomment this last line of the test procedure before going on to the next activity.

2. The Function has_a_vowel(s) (OPTIONAL)

Now that you know how test scripts work, it is time to create a unit test script to check for any
errors in the module lab03. You are going to start by testing the function has_a_vowel(s). We
guarantee that this function has a bug in it.

2.1. Creating a Test Procedure. Following the naming convention showed in class, you should
test has_a_vowel(s) with the test procedure called test_has_a_vowel(). You are not going to
put any tests in the procedure yet, but we do want you to put in a single print statement. So right
now, your procedure should look like this:

def test_has_a_vowel():
print 'Testing function has_a_vowel()'

You should put this procedure definition below the definition of test_assert, but above the
script code. If you put it below the script code then it will not work properly.

The purpose of the print statement is so that you have a way to determine whether the test
is running properly. Without it, a properly written script will not display anything at all, and we
have seen that students find this confusing.

A test procedure is not useful if we do not call it. Add a call to the procedure in the “script code”
(e.g. the code the comment # SCRIPT CODE). Add the call before the final print statement. Once
again, run the script lab04.py. What do you see?

3



2.2. Implement the First Test Case. In the body of function test_has_a_vowel(), you are
now going to add several new statements below the print statement that do the following:

• Create the string 'aeiou' and save its name in a variable s.
• Call the function has_a_vowel(s), and put the answer in a variable called result.
• Call the procedure cornelltest.assert_equals(True,result).

If you want, you can combine all three steps into a single nested function call like

cornelltest.assert_equals(True,funcs.has_a_vowel('aeiou'))

Either of these approaches will verify that the value of has_a_vowel('aeiou') is True. If not, it
will stop the program and notify you of the problem.

Run the unit test script now. If you have done everything correctly, the script should reach the
message 'Module funcs is working correctly.' If not, then you have actually made an error
in the testing program. This can be frustrating, but it happens sometimes. One of the important
challenges with debugging is understanding whether the error is in the code or the test.

2.3. Add More Test Cases for a Complete Test. Just because one test case worked does not
mean that the function is correct. The function has_a_vowel can be “true in more than one way”.
For example, it is true when s has just one vowel, like 'a'. Alternatively, s could be 'o' or 'e'.
We also need to test strings with no vowels. It is possible that the bug in has_a_vowel causes it
returns True all the time. If it does not return False when there are no vowels, it is not correct.

There are a lot of different strings that we could test — infinitely many. The goal is to pick test
cases that are representative. Every possible input should be similar to, but not exactly the same
as, one of the representative tests. For example, if we test one string with no vowels, we are fairly
confident that it works for all strings with no vowels. But testing 'aeiou' is not enough to test all
of the possible vowel combinations.

How many representative test cases do you think that you need in order to make sure that the
function is correct? Perhaps 6 or 7 or 8? Write down a list of test cases that you think will suffice
to assure that the function is correct:

2.4. Test. Run the test script. If an error message appears, study the message and where the error
occurred to determine what is wrong. While you will be given a line number, that is where the
error was detected, not where it occured. The error is in has_a_vowel.

2.5. Fix and Repeat. You now have permission to fix the code in lab04.py. Rerun the unit test.
Repeat this process (fix, then run) until there are no more error messages.

4



The Function replace_first(word,a,b) (OPTIONAL)

You should have enough experience to work on Assignment 1 now, but we have one more exercise
if you want it. Read the specification for the function replace_first in funcs.py.

In module lab04.py, you should make up another test procedure, test_replace_first(). Once
again, this test procedure should start out with a simple print statement to help you see when it
is running, just like you did with test_has_a_vowel(). You should also add a call to this test
procedure in the script code, before the final print statement.

2.6. Implement the First Test Case. This function is different in that your tests now require
multiple inputs (not just one). For that reason, we are going to skip the step where you assigned
the input to a variable before calling the function. Instead, we will just have you call the function
on the inputs directly.

To see what we mean by this, we will get you started with the first test case.

• Call replace_first on 'crane', 'a', and 'o' and assign the value to result.

• Use assert_equals to compare result to 'crone', the expected value.

In the example above, this input is not just 'crane'. It is all three values. If you called the function
on 'crane', 'e', and 'k' (producing 'crank'), that is actually a separate test case. There should
be no error when you run lab04.py. Check your test procedure if you run into any problems.

2.7. Add Another Test Case. Obviously, that first test case is not enough to test this function.
We told you there was an error, and you have not found an error yet. Read the specification for
replace_first. Why was the first test case not sufficient to test the function replace_first?

In the box below, list some better test cases to try out.

Add these test cases to the test procedure test_replace_first() and run the unit test script
again. You should get an error message now, provided that you chose your test cases correctly.

2.8. Isolate the Error. Unit tests are great at finding whether or not an error exists. But they
do not necessarily tell you where the error occurred. The procedure replace_first() has four
assignments. The error could have occurred at any one of them.

We often use print statements to help us isolate an error. Recall in class that something as
simple as a spelling error can ruin a computation. That is why is always best to inspect a variable
immediately after you have assigned a value to it.

5



Open up funcs.py. Inside of replace_first, after the assignment to pos, add the statement

print pos

Do the same after the remaining three assignments (that is, print before, after, and result). Now
run the script. Before you see the error message, you should see four lines printed to the screen.
Those are the result of your print statements. These numbers help you “visualize” what is going on
in replace_first().

There should be enough information that you can tell which value printed out is the one assigned
to before. How do you tell this?

2.9. Fix and Test. You should now have enough information from these three print statements to
see what the error is. What is it?

Fix the error and test the procedure again by running the unit test script.

2.10. Add Yet Another Test Case. Guess what? There is a second bug with this function. This
one is a little more subtle. Read the specification very carefully. Come up with another important
testto try. You can tell that it is the test is the correct one if the function fails the test.

2.11. Fix and Test. The print statements that you put in replace_first should still be there,
and they should help you identify the error once again. What is it?

2.12. Clean up replace_first(). Unlike unit tests, using print statements to isolate an error is
quite invasive. You do not want those print statements showing information on the screen every
time you run the procedure. So once you are sure the program is running correctly, you should
remove all of the print statements added for debugging. You can either comment them out (fine in
small doses, as long as it does not make your code unreadable), or you can delete them entirely.

However, once you remove these, it is important that you test the procedure one last time. You
want to be sure that you did not delete the wrong line of code by accident. Run the unit test script
one last time, and you are done.

6


	Getting Credit for the Lab
	Lab Materials (OPTIONAL)
	1. Working with a Test Script (OPTIONAL)
	2. The Function has_a_vowel(s) (OPTIONAL)
	2.1. Creating a Test Procedure
	2.2. Implement the First Test Case
	2.3. Add More Test Cases for a Complete Test
	2.4. Test
	2.5. Fix and Repeat

	The Function replace_first(word,a,b) (OPTIONAL)
	2.6. Implement the First Test Case
	2.7. Add Another Test Case
	2.8. Isolate the Error
	2.9. Fix and Test
	2.10. Add Yet Another Test Case
	2.11. Fix and Test
	2.12. Clean up replace_first()


