
1

One-on-One Sessions

• Starting tomorrow: 1/2-hour one-on-one sessions
§ Bring computer to work with instructor, TA or consultant
§ Hands on, dedicated help with Lab 2 and/or Lab 3
§ To prepare for assignment, not for help on assignment

• Limited availability: we cannot get to everyone
§ Students with experience or confidence should hold back

• Sign up online in CMS: first come, first served
§ Choose assignment One-on-One
§ Pick a time that works for you; will add slots as possible
§ Can sign up starting at 1pm TODAY

Recall: The Python API

Function name

Number of arguments

What the function evaluates to

• This is a specification
§ Enough info to use func.
§ But not how to implement

• Write them as docstrings

Anatomy of a Specification

def greet(n):
"""Prints a greeting to the name n

Greeting has format 'Hello <n>!'
Followed by conversation starter.

Parameter n: person to greet
Precondition: n is a string"""
print 'Hello '+n+'!’
print 'How are you?'

One line description,
followed by blank line

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

One line description,
followed by blank line

Anatomy of a Specification

def to_centigrade(x):
"""Returns: x converted to centigrade

Value returned has type float."""

Parameter x: temp in fahrenheit
Precondition: x is a float
return 5*(x-32)/9.0

“Returns” indicates a
fruitful function

More detail about the
function. It may be
many paragraphs.

Parameter description

Precondition specifies
assumptions we make
about the arguments

Preconditions

• Precondition is a promise
§ If precondition is true,

the function works
§ If precondition is false,

no guarantees at all
• Get software bugs when

§ Function precondition is
not documented properly

§ Function is used in ways
that violates precondition

>>> to_centigrade(32)
0.0
>>> to_centigrade(212)
100.0
>>> to_centigrade('32')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "temperature.py", line 19 …

TypeError: unsupported operand type(s)
for -: 'str' and 'int'

Precondition violated

Test Cases: Finding Errors
• Bug: Error in a program. (Always expect them!)
• Debugging: Process of finding bugs and removing them.
• Testing: Process of analyzing, running program, looking for bugs.
• Test case: A set of input values, together with the expected output.

def number_vowels(w):
"""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters"""
pass # nothing here yet!

Get in the habit of writing test cases for a function from the
function’s specification —even before writing the function’s body.

2

Representative Tests

• Cannot test all inputs
§ “Infinite” possibilities

• Limit ourselves to tests
that are representative
§ Each test is a significantly

different input
§ Every possible input is

similar to one chosen
• An art, not a science

§ If easy, never have bugs
§ Learn with much practice

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Unit Test: A Special Kind of Module

• A unit test is a module that tests another module
§ It imports the other module (so it can access it)
§ It imports the cornelltest module (for testing)
§ It defines one or more test procedures

• Evaluate the function(s) on the test cases
• Compare the result to the expected value

§ It has special code that calls the test procedures

• The test procedures use the cornelltest function
def assert_equals(expected,received):

"""Quit program if expected and received differ"""

Testing last_name_first(n)

test procedure
def test_last_name_first():

"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White')
cornelltest.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
cornelltest.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print 'Module name is working correctly'

9/8/15 Specifications & Tes ting 9

Quits Python
if not equal

Message will print
out only if no errors.

Call function
on test input

Compare to
expected output

Modules vs. Scripts

Module

• Provides functions, constants
§ Example: temperature.py

• import it into Python
§ In interactive shell…
§ or other module

• All code is either
§ In a function definition, or
§ A variable assignment

Script

• Behaves like an application
§ Example: helloApp.py

• Run it from command line
§ python helloApp.y
§ No interactive shell
§ import acts “weird”

• Commands outside functions
§ Does each one in order

Modules/Scripts in this Course
• Our modules consist of

§ Function definitions
§ “Constants” (global vars)
§ Optional script code to

call/test the functions
• All statements must

§ be inside of a function or
§ assign a constant or
§ be in the application code

• import will only use the
definitions, not app code

temperature.py
...
Functions
def to_centigrade(x):

"""Returns: x converted to C"""
…
Constants
FREEZING_C = 0 .0 # temp. water freezes
…
Application code
if __name__ == '__main__':

assert_floats_equal(0 .0 ,to_centigrade(32.0))
assert_floats_equal(100,to_centigrade(212))
assert_floats_equal(32.0 ,to_fahrenheit(0 .0))
assert_floats_equal(212.0 ,to_fahrenheit(100.0))

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print end_first
first = n[:end_first]
print 'first is '+`first`
last = n[end_first+1:]
print 'last is '+`last̀
return last+', '+first

Print variable after
each assignment

Optional: Annotate
value to make it
easier to identify

