One-on-One Sessions

e Starting tomorrow: 1/2-hour one-on-one sessions

* Limited availability: we cannot get to everyone

* Sign up online in CMS: first come, first served

= Bring computer to wark with instructor, TA or consultant
= Hands on, dedicated help with Lab 2and/or Lab 3
= To prepare for assignment,not for help on assignment

= Students with experience or confidence should hold back

= Choose assignment One-on-One
= Pick a time that works for you; will add slots as possible
= Can sign up starting at IJpmTODAY

Recall: The Python API

math. ceil(x)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

Function name

.2. mat! hem:
Number of arguments |

.J* This is a specification
= Enough info to use func.
* But not how to implemen

|* Write them as docstrings|

Anatomy of a Specification
{

def greet(n):

One line description,)
z\followed by blank lireA

"""Prints a greeting to the name n

More detail about the

Greeting has format 'Hello <n function. It may be
Followed by conversation starter. {nany paragraphs.

! Parameter descﬁption]

Parameter n: person to greet
Precondition: n is a string™"
print 'Hello '+n+'"’

print 'How are you?'

Precondition specifies
assumptions we make
about the arguments

Anatomy of a Specification
{ «

Returns” indicates a |
def to_centigrade(x): l fruitful function
x converted to centigra

More detail about the
function. It may be
many paragraphs.

Value returned has type float."

Parameter x: temp in fahrenheit
Precondition: x is a float
return 5*(x-32)/9.0

ﬁParameter description]

Precondition specifies
assumptions we make
about the arguments

Preconditions

e Precondition is a promise >>> to_centigrade(32)
= If precondition is true, 0.0
the function works >>> t0_centigrade(212)
= If precondition is false, 100.0
no guarantees at all ’ de(52)
>>> t0_centigrade
L]
Get sof?ware bUgS_ .Wh.el‘l Traceback (most recent call last):
® Function precondition is ppo vegain>' Ine 1.1 <module>
not documented properly .. “emperaturepy”, Ine 19 ..
= Function is used in ways TypeEmor: unsupported operand type(s)

that violates precondition for - 'sir’ and 'int'
Precondition violated

Test Cases: Finding Errors

Bug: Emorin a program. (Always expect them!)

Debugging: Process of finding bugs and removing them.

Testing: Process of analyzing, running program, looking for bugs.
Test case: A set of input values, together with the expected output.

Get in the habit of writing testcases for a function from the
function’s specification —even before writing the function’s body.

def number_vowels(w):
""Returns: number of vowels in word w.

Precondition: w string w/ at least one letter and only letters™"
pass # nothing here yet!

Representative Tests

e Cannot test all inputs
= “Infinite” possibilities
* Limit ourselves to tests
that are representative

= Each test is a significantly
different input

= Every possible input is
similar to one chosen

e An art, not a science
= If easy, never have bugs
= Learn with much practice

Representative Tests for
number_vowels(w)

Unit Test: A Special Kind of Module

* Word with just one vowel
= For each possible vowel!

* Word with multiple vowels
= Of the same vowel
= Of different vowels

* Word with only vowels

* Word with no vowels

* A unit test is a module that tests another module
= Jtimports the other module (so it can access it)
= Itimports the cornelltest module (for testing)
= It defines one or more test procedures
* Evaluate the function(s) on the test cases
¢ Compare the result to the expected value
= It has special code that calls the test procedures
e The test procedures use the cornelltest function
def assert_equals(expected,received):
"""Quit program if expected and received differ

Testing last_name_first(n)

test procedure
def test_last_name_first(:

"Test procedure for last_name_first(n)""
result = name.last_name_first(Walker White")
cornelltest.assert_equals(White, Walker', resul

Call function
on test input

result = name.last_name_first(Walker White'

cornelltest.assert_equals(White, Walker', result;

Execution of the testing code
test_last_name_firstQ

print 'Module name is working correctly

Quits Python
if not equal

Message will print
out only if no errors.

98/15 Specifications & Testing 9

Modules vs. Scripts

Module Script

Compare to
&< expected output

Provides functions, constants ¢ Behaves like anapplication
= Example: temperature.py = Example: helloApp.py

e import it into Python * Run it from command line

= python helloApp.y

= No interactive shell

= In interactive shell...
= or other module

All code is either
= In a function definition, or ~* Commands outside functions

= import acts “weird”

= A variable assignment = Does each one in order

Modules/Scripts in this Course

* Our modules consist of
= Function definitions
= “Constants” (global vars)
= Optional script code to
call/test the functions
* All statements must
= be inside of a function or
= assign a constant or
= be in the application cade
* import will only use the
definitions, not app code

Finding the Error

temperature.py

Functions
def to_centigrade(x):
| """Returns: x converted toC"""

Constants
FREEZING_C=0.0 #temp. water freezes

Application code

if __name__=='__man__"
assert_floats_equal(0.0,t0_centigrade(32.0))
assert_floats_equal(100,to_centigrade(12))
assert_floats_equal(32.0,50_fahrenheit(0.0))
assert_floats_equal(2 12.0,t0_fahrenheit(100.0)

Unit tests cannot find the source of an error

Idea: “Visualize” the program with print statements
def last_name_first(n):
"""Returns: copy of <n> in form <last> <first>""

enfi_ﬁrst - 0.ndC Print variable after
print end_first
first = n[:end_first]

print first is '+ first™
last =n[end_first+1:]
print last is '+ last’
return last+', +first

Optional: Annotae
value to make it
easier to identify

