Last Name: First Name: Cornell Netid:

CS 1110 Prelim 2 November 6th, 2012

This 90-minute exam has 7?7 questions worth a total of 7?7 points. Scan the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may
tear the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You may not use while-loops. Beyond that, you may use any Python feature that you have learned
about in class (particularly for-loops and recursion).

Run ITEX again to produce the table

The Important First Question:

1. [2 points] Write your last name, first name, and Cornell Netld at the top of each page.

Last Name: First Name: Cornell Netid:

2. [26 points] Classes and Subclasses On the next two pages are the skeletons of two classes.
For Species complete the two properties and a constructor (not __str__). For Animal com-
plete everything. Enforce invariants in setters and enforce preconditions in both
constructors. Do not write specifications (e.g. for the properties) beyond what is given.

class Species(object):

"""Instance is an endangered species"""

IMMUTABLE ATTRIBUTES

_name = '' # Species name; must be a string

MUTABLE ATTRIBUTES

_year = 0 # Year on endangered list; int >= 1900 (0 if not on list)

DEFINE PROPERTY name for FIELD _name (specification not necessary)
O@property
def name(self):

return self._name

DEFINE PROPERTY year for FIELD _year (specification not necessary)
Q@property
def year(self):

return self._year

Qyear.setter
def year(self,value):

assert type(value) == int
assert value >= 1900 or value ==
self._year = value

def __init_(self, s, y=0): # Fill in parameters

"""Constructor: species with name s, put on list in year y.
Precondition: s a string, y an int >= 1900 or ==

y has default of 0."""

assert type(s) == str

self. name = s

self.year = y # property handles asserts

def __str__(self):

"""Returns: Description of this species

We have completed this method for you. Do not change it."""
suffix = "'

if self.year != O:

suffix = ' endangered since '

+ str(self.year)

return self.name+suffix

Page 2

class Animal(Species):

"""Instance is a species of Animal"""
IMMUTABLE ATTRIBUTES
_legs = 0 # Number of legs; int >= 0

Last Name: First Name: Cornell Netid:

DEFINE PROPERTY legs for FIELD _legs (specification not necessary)

Q@property
def legs(self):

return self. legs

def __init__(self,s,x):

"""Constructor: an x-legged animal of species s that is not
Precondition: s a string, x an int >= 0."""

YOU MUST USE SUPERQ)

assert type(x) == int and x >= 0

super (Animal,self).__init__(s) # Handles other asserts

self. legs = 0

def __str__(self):

"""Returns: Description of this species

Format is __str__ from the superclass followed by '

you fill in the value for legs.
YOU MUST USE SUPER()
prefix = super(Animal,self).__str__()
return prefix+' with '+str(self.legs)+' legs'

at the interactive prompt (and hence in global space).

>>> x = Species('Indiana Bat', 1967)
>>> y = Animal ('Red Wolf', 4)
>>> z = x

>>> x.year = 0

endangered.

with <legs> legs', where

3. [18 points] Drawing Folders Suppose you are executing the following sequence of commands

On the next page (or the back), create two columns: one for global space and another for heap
space. Clearly show what is created in each, drawing folders for objects and boxes for variables.
If the value of a variable or attribute changes, cross the old one out and write the new value

out beside it.

Page 3

Last Name: First Name:

Cornell Netid:

Global Space
x

y 54013827

z 41280452

4. [14 points| Iteration.

Heap Space

41280452

name
year q

_ init_ (s,y=0) __str_ ()

54013827

__init_ (s,y=0) __str_ O

legs III Animal

__init_ (s,%) _str_ O

Complete procedure clamp(seq,vmin,vmax) below according to the specification. You should
use a for-loop. Do not use recursion or a while-loop. Note that it is a procedure that modifies
the list. It does not return a new value. You do not need to assert function preconditions.

Hint: The function len gives the length of a list.

def clamp(seq,vmin,vmax):

"""Clamp the values in list seq (modifies seq, does not return a copy).

Values less than vmin become vmin; values greater than vmax become vmax

Example: if a =
that it is now [2, -4, 4].

Precondition:
for k in range(len(seq)):

if seqlk] > vmax:

seq[k] = vmax

if seqlk] < vmin:

seqlk] = vmin

Procedure; nothing else to do

seq is a list of ints.

[2, -5, 7], then clamp(a,-4,4) modifies the list a so

vmax > vmin are ints."""

Page 4

Last Name:

First Name: Cornell Netid:

5. [?? points total] Recursion.

(a)

[14 points|

m-RNA (messenger RNA) is a chain or string of “nu- CGGG left half
cleotides.” These nucleotides are typically denoted by GCCC right half reversed
the four symbols 'C' (cytosine), 'G' (guanine), 'A’
(adenine), and 'U' (uracil). When writing programs ceGegGcCcccecega
to process m-RNA, we typically represent them as a ‘ LI ‘
string of these four letters. For example, 'AUUGC' is

an m-RNA sequence.

Each nucleotide has a complementary nucleotide with which it bonds; 'C' and 'G' are
a complementary pair, as are 'A' and 'U'. We call the RNA sequence 'CGGGCCCG'
a perfect hinge because, if the right half is reversed and placed under the left half, the
corresponding characters are complementary. This is shown above. From this definition
of a perfect hinge, we can deduce that an empty sequence is a perfect hinge and a
sequence with an odd number of elements is not a perfect hinge.

Structures similar to perfect hinges play an important role in biology. Hence, we often
want to detect whether an m-RNA sequence has this property. Implement the function
below with the given specification. Use recursion, not a loop.

Hint: You may find this problem easier if you write a helper function to check if two
symbols are complimentary pairs. If you do, include a specification docstring. Do not
bother to assert the preconditions, for either ishinge or any helper function.

def ishinge(seq):
"""Returns: True if the m-RNA sequence is a perfect hinge. Returns
False otherwise (e.g. not even, does not match).
Precondition: seq is a string with characters 'C', 'G', 'A', 'U'."""
Special cases mentioned above in bold
if len(seq) == 0:
return True
elif len(seq) % 2 != O:
return False

Recursive case: even and non-empty
USES HELPER ON NEXT PAGE
return complement(seq[0],seql[-1]) and ishinge(s[1:-1])

Page 5

Last Name: First Name: Cornell Netid:

(more space for part a)

def complement(cl,c2):
"""Returns: True if cl and c2 are complementatary, False otherwise

Precondition: <c¢1, c2 are each either 'G', 'G', 'A', 'U'"""
return ((c1 == 'G' and c2 == 'C') or

(c1 == 'C' and c2 == 'G') or

(cl1 == '"A'" and c2 == 'U') or

(c1 == 'U' and c2 == 'A"))

(b) [8 points] One recursive function that we saw in class was factorial:

def factorial(n):
"""Returns: n!

Precondition: n a nonnegative integer"""

if n==0: # Base case
return 1

Recursive case
return n*xfactorial(n-1)

N R

Evaluate the recursive call factorial (2) until the base case completes its return-statement
at line 2 (but before the frame is erased and the value is returned). Draw the call stack
at this point in time. The stack will have 3-4 call frames.

factorial 4

factorial 4

factorial

Page 6

Last Name:

First Name: Cornell Netid:

6. [?? points total] Short Answer.
Answer the following questions. Each answer will require multiple sentences, but should not
require more than a paragraph.

(a)

[4 points] What is the difference between is and ==7 Give an example of when you would
want to use each of these operators.

The operator is compares objects by “folder name.”

The operator == invokes the __eq__ method. This generally, but not always, compares
objects by contents.

In general, you want to use == if you want to compare objects by contents (e.g. check if
two distinct Vector objects have different x and y attributes). You always need to use is
to compare an object to None, as None has no contents.

[4 points] What is dispatch-on-type? How does it apply to error handling in Python?

Dispatch-on-type is the concept that the behavior of a Python command (such as a function
or method call, or a try-except block) depends upon the type of the objects in involved.
Different types create different behaviors.

In error handling, the except part of a try-except block can specify the type of an error
object. It will only recover if the error received matches that type; it will not recover for
other errors.

[4 points] What is the bottom-up rule? How does it relate to overriding?

The bottom-up rule says that, when we call a method on an object, Python works from
the bottom partition to find the method definition. It searches the partitions in the object
folder starting from the main class, and progressively through each super class until it
finds a method of that name.

Overridding is the act of the replacing a method that is defined in a parent class with
a new definition. The bottom-up rule guarantees that the new definition will always be
used.

Page 7

Last Name: First Name: Cornell Netid:

(d) [4 points] Explain the difference between interface and implementation.

Interface is everything any other programmer can see: function/method headers and spec-
ifications (for methods and attributes). Implementation is everything else: hidden func-
tions/methods/fields and function/method bodies.

Interface is difficult to change because other people depend on it. Implementation is easy
to change because it is hidden

(e) [2 points] Is the following function definition legal? Why or why not?

def absmax(x,y=0,z):
"""Returns: the maximum absolute value of x, y, and z.
Precondition: x, y, and z are numbers (int or float)"""
return max(abs(x),abs(y),abs(z))

It is illegal. You cannot have parameters without defaults (e.g. z) after a parameter with
a default (e.g. y=0).

Page 8

