
Last Name: Ution First Name: Sol Cornell NetID: SU1110

Circle your lab: Tu 12:20 Tu 1:25 Tu 2:30 Tu 3:35 W 12:20 W 1:25 W 2:30 W 3:35

CS 1110 Prelim 1 March 7th, 2013 SOLUTIONS

1. When allowed to begin, write your last name, first name, and Cornell NetID at the top of each
page, and circle your lab time on the top of this page.

Every time a student doesn’t do this, somewhere, a kitten weeps.
More seriously, we did have an exam come apart during grading, so it is actually important to
write your name on each page. Also, remember that if we need to figure out your lab section
at the end of the grading session (roughly 2am this time around), our chances of putting it the
wrong pile, and thus you not being able to find it when you get to lab, grow high.

2. [16 points] Match the shaded parts of the following Python program to the names below. In
your answer, each letter should occur exactly once.

I Assignment statement F List indexing
Q Name of a function being called G/P Function call expression
C Name of a function being defined P Method call expression
J/R Boolean expression E Docstring
D Parameter O Comment
H/R Argument M Conditional expression
K String literal A Name of global variable being created
L Integer literal N Name of local variable being created
B List F/H Reference to an attribute of an object

month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

def date_time_str(dt, twelve_hour):
 """Return the date and time in the object <dt>, in the format
 MMM DD, YYYY HH:MM:SS
 Example:
 Mar 7, 2013 19:30:00
 if the boolean <twelve_hour> is True, the time is given in 12-hour
 format with AM or PM appended. Example:
 Mar 7, 2013 7:30:00 PM
 """
 # Format the date as a string
 date_str = month_names[dt.month] + " " + str(dt.day) + ", " + str(dt.year)
 # Adjust the time for 12-hour clock if required
 hour = dt.hour
 if twelve_hour:
 time_suffix = (" AM" if dt.hour < 12 else " PM")
 hour = (12 if hour == 0 else (hour if hour <= 12 else hour - 12))
 else:
 time_suffix = ""
 # Format the time part of the string
 time_str = ':'.join(map(str, [hour, dt.minute, dt.second]))
 # Assemble the result from the values computed so far
 return date_str + " " + time_str + time_suffix

print date_time_str(get_current_time(), True)

A

B
C D

E

F

I
J

L MN

P
O

Q R

K

G H

3. [16 points] Two students were assigned to diagram the execution of the following code. You
are their grader; please circle all errors and write in anything that is missing. You may wish
to do this question by first drawing the relevant frames and objects yourself.

In the first purported solution, the “25” should be a “22” (so the second solution got this right!)
and the “18” should be 15.

def f(x, y):

c = 3*x
y[0] = b + c + y[1]
c = 0

def g(a, b):

f(2, a)
return b + a[0]

b = 4
c = 5
x = g([b,c], 7)

Page 2

4. [4 points] Here, we consider a simplified version of extracting information from a web page.

Assume that variable x stores a string of the form

string2

where both string1 and string2 are strings that do not contain double quotes or angle brackets.
The only space in the format shown above is after the first a, although string1 and string2 may
themselves contain spaces. Example: if x were the string ' that',
then string1 would be ' this ' and string2 would be ' that'.

Write a sequence of one or more statements that result in variable s2 holding the string string2.

There are several possible solutions; here’s one.

i1 = x.index('>')
i2 = x.rindex('<')
s2 = x[i1+1:i2]

5. This question involves code for suggesting new NetIDs.

Assume file last.py defines a type of object called LastUsed. These have two attributes:

prefix non-empty string of lowercase letters
suffix positive int

and can be created by calls like this: last.LastUsed('djs', 98) (if last has been imported).

File last.py also implements the function ind(lulist, p) with the following spec:

def ind(lulist, p):
"""Returns: index in lulist of LastUsed object with prefix p (-1 if no such object)

Preconds: lulist is a (possibly empty) list of LastUsed objects with distinct
prefixes. p is a non-empty string of lowercase letters."""

(a) [8 points] Draw all objects and variables created by the following sequence of commands.
(Don’t draw any frames.)
import last
temp = [last.LastUsed('ljl', 2), last.LastUsed('srm',2)]
has_srm = last.ind(temp, 'srm')

Page 3

(b) [12 points] On the next page(s), complete file nets.py by following the helpful di-
rections given in curly braces. Each such direction can require multiple lines to
implement. For reference, here are some functions and the like you can use:
x in lt Returns: True if x is in list lt, False otherwise.
lt.append(x) Append object x to the end of list lt.
lt.pop(i) Returns: item at position i in list lt, removing it from lt. If i is

omitted, returns and removes the last item.
lt.sort() Sort the items of lt, in place (the list is altered).

nets.py {Omit other authoring info.}

import last

def newid(fname, mname, lname, all_last):
"""Returns: NetID for new Cornellian named fname mname lname. For

people with the same initials, gives out sequentially numbered
NetIDs starting with the number 1.

The new NetID is a string of this person's initials (first
initial coming first) and the next available numerical suffix,
according to all_last.

The list all_last keeps track of which NetIDs have been used; it
contains a LastUsed object for each set of initials that has
been used in a NetID, with the highest number that has been given
out so far. It is modified to account for the new NetID
returned by this function.

{Don’t worry, we explain how to do this in the remarks below.}

For instance, if all_last started out empty, and then the NetIDs
abc1, foo1, and abc2 are generated, all_last should contain
two LastUsed objects: one with prefix 'abc' and suffix 2, and one
with prefix 'foo' and suffix 1.

Preconditions: all arguments are strings containing only
lowercase letters. The lengths of fname and lname are at
least 1. The list all_last contains LastUsed objects
indicating which NetIDs have been used."""

Page 4

Many solutions were possible.
A common error was to try something like if inits in all last. The problem is
that all last is a list of LastUsed objects, not strings, and inits is a string.

slicing trick for mname==''; if-stmt/conditional expr. was expected
inits = fname[0] + mname[0:1] + lname[0]

i = last.ind(all last, inits) # inits is new iff i is -1

if i != -1:
all last[i].suffix = all last[i].suffix + 1
suf = all last[i].suffix

else:
all last.append(last.LastUsed(inits,1))
suf = 1

return inits + str(suf)

6. [8 points] Complete the body of testing procedure testnew for function newid from the pre-
vious problem.1 You may make at most five calls to newid. Our grading will focus on the
completeness of your test cases: they should cover the space of possible arguments with which
newid could be called. To save time on this exam, do not directly check whether the argument
list has been correctly modified; only directly check whether newid’s return value is correct.

import last
import nets
import cunittest2

def testnew():
"""Test the newid fn in nets"""

Many solutions were possible.

lt = []
test if correct when list is empty
cunittest2.assert equals('srm1', nets.newid('sa', 'ra', 'max', lt))
test old initials
cunittest2.assert equals('srm2', nets.newid('sa', 'ra', 'max', lt))
test new initials
cunittest2.assert equals('ll1', nets.newid('la', '', 'lee', lt))
test an old set of initials, and also a LastUsed not in position 0
cunittest2.assert equals('ll2', nets.newid('laci', '', 'lee', lt))
#test having a middle initial, same first and last initial
cunittest2.assert equals('ljl1', nets.newid('li', 'joon', 'lee', lt))
print "All tests for newid passed"

1Yes, for this exam we’re doing the testing after the implementation. Tsk, tsk.

Page 5

