Lecture 26

Sorting

Announcements for This Lecture

Prelim/Finals

Assignments/Lab

- Prelims in handback room
- Gates Hall 216
- Open "business hours"
- Get them any day this week
- Final: Dec 17 ${ }^{\text {th }} \mathbf{2 : 0 0 - 4 : 3 0 p m}$
- Study guide by end of week
- Conflict with Final time?
- Submit to Final Conflict assignment on CMS
- Must be in by December 10th
- A6 will be graded by Thurs.
- Will give grade breakdown
- Will review survey too
- A7 is due next Wednesday
- One week left
- Keep up with deadlines
- Lab 13 is optional
- Good study for the final
- Consultant hours still open

Linear Search

- Vague: Find first occurrence of v in $\mathrm{b}[\mathrm{h} . \mathrm{k}-1]$.

Linear Search

- Vague: Find first occurrence of v in b[h..k-1].
- Better: Store an integer in i to truthify result condition post: post: 1. v is not in b[h.i-1]

2. $\mathrm{i}=\mathrm{k} \quad$ OR $\mathrm{v}=\mathrm{b}[\mathrm{i}]$

Linear Search

- Vague: Find first occurrence of v in b[h..k-1].
- Better: Store an integer in i to truthify result condition post: post: 1. v is not in $b[h . i-1]$

2. $\mathrm{i}=\mathrm{k} \quad \mathrm{OR} \quad \mathrm{v}=\mathrm{b}[\mathrm{i}]$

Linear Search

- Vague: Find first occurrence of v in b[h..k-1].
- Better: Store an integer in i to truthify result condition post: post: 1. v is not in b[h.i-1]

2. $\mathrm{i}=\mathrm{k} \quad$ OR $\mathrm{v}=\mathrm{b}[\mathrm{i}]$

OR

Linear Search

Linear Search

def linear_search(b,c,h):
"""Returns: first occurrence of c in b[h..]"""
\# Store in i the index of the first c in $\mathrm{b}[\mathrm{h}$. .]
$\mathrm{i}=\mathrm{h}$
\# invariant: c is not in b[0..i-1]
while $\mathrm{i}<\operatorname{len}(\mathrm{b})$ and $\mathrm{b}[\mathrm{i}]$!= c :
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
\# post: c is not in $\mathrm{b}[\mathrm{h} . \mathrm{i}-\mathrm{l}]$
\# $\quad \mathrm{i}>=\operatorname{len}(\mathrm{b})$ or $\mathrm{b}[\mathrm{i}]==\mathrm{c}$
return i if i < len(b) else -l

Analyzing the Loop

1. Does the initialization make inv true?
2. Is post true when inv is true and condition is false?
3. Does the repetend make progress?
4. Does the repetend keep the invariant inv true?

Binary Search

- Vague: Look for v in sorted sequence segment $\mathrm{b}[\mathrm{h} . \mathrm{k}]$.

Binary Search

- Vague: Look for v in sorted sequence segment b[h..k].
- Better:
- Precondition: b[h..k-1] is sorted (in ascending order).
- Postcondition: b[h.i] < v and v <= b[i+1..k-1]
- Below, the array is in non-descending order:

Binary Search

- Look for value v in sorted segment $\mathrm{b}[\mathrm{h} . . \mathrm{k}]$

New statement of the invariant guarantees that we get leftmost position of v if found

- if v is 3 , set i to 0
- if v is 4 , set i to 5
- if v is 5 , set i to 7
- if v is 8 , set i to 10

Binary Search

- Vague: Look for v in sorted sequence segment b[h..k].
- Better:
- Precondition: b[h.k-1] is sorted (in ascending order).
- Postcondition: b[h.i] <= v and $\mathrm{v}<\mathrm{b}[\mathrm{i}+1 . \mathrm{k}-1]$
- Below, the array is in non-descending order:

Called binary search because each iteration of the loop cuts the array segment still to be processed in half

Binary Search

Looking at $\mathrm{b}[\mathrm{i}]$ gives linear search from left.
Looking at $\mathrm{b}[\mathrm{j}-1]$ gives linear search from right.
Looking at middle: $\mathrm{b}[(\mathrm{i}+\mathrm{j}) / 2]$ gives binary search.

Sorting: Arranging in Ascending Order

pre: $b \square^{0}$? post: $b \square^{0}{ }^{n}$

Insertion Sort:

$$
\begin{aligned}
& \mathrm{i}=0 \\
& \text { while } \mathrm{i}<\mathrm{n}: \\
& \quad \begin{array}{l}
\# \text { Push b[i] down into its } \\
\# \text { sorted position in b[0..i] } \\
\mathrm{i}=\mathrm{i}+1
\end{array}
\end{aligned}
$$

Insertion Sort: Moving into Position

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
push_down(b,i)
$\mathrm{i}=\mathrm{i}+1$
def push_down(b, i):

$j=$ i
while $\mathrm{j}>0$:
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$
swap shown in the lecture about lists

The Importance of Helper Functions

$$
i=0
$$

while i < n :
push_down(b,i)

$$
\mathrm{i}=\mathrm{i}+1
$$

def push_down(b, i):

$$
j=i
$$

while $\mathrm{j}>0$:
if $b[j-1]>b[j]:$
swap(b,j-1,j)
$j=j-1$

Can you understand

$\mathrm{i}=0 \quad$ all this code below?
while i < n :

$$
j=i
$$

while j > 0:

$$
\text { if } b[j-1]>b[j]:
$$

$$
\text { temp }=b[j]
$$

$$
b[j]=b[j-1]
$$

$$
b[j-1]=\text { temp }
$$

$$
j=j-1
$$

$$
\mathrm{i}=\mathrm{i}+1
$$

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
$\mathrm{j}=\mathrm{i}$
while $\mathrm{j}>0$:
if $b[j-1]>b[j]$:
$\operatorname{swap}(b, j-1, j)$
$j=j-1$

- b[0..i-1]: i elements
- Worst case:
- $\mathrm{i}=0$: 0 swaps
- $\mathrm{i}=1: 1$ swap
- $\mathrm{i}=2$: 2 swaps
- Pushdown is in a loop
- Called for i in 0..n

Insertion sort is - i swaps each time an n^{2} algorithm

Total Swaps: $0+1+2+3+\ldots(n-1)=(n-1) * n / 2$

Algorithm "Complexity"

- Given: a list of length n and a problem to solve
- Complexity: rough number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

Complexity	$\mathrm{n}=\mathbf{1 0}$	$\mathrm{n}=100$	$\mathrm{n}=1000$
n	0.01 s	0.1 s	1 s
$\mathrm{n} \log \mathrm{n}$	0.016 s	0.32 s	4.79 s
n^{2}	0.1 s	10 s	16.7 m
n^{3}	1 s	16.7 m	11.6 d
2^{n}	1 s	$4 \times 10^{19} \mathrm{y}$	$3 \times 10^{290} \mathrm{y}$

Major Topic in 2110: Beyond scope of this course

Sorting: Changing the Invariant

pre: $b \square^{0}$? post: $b \square^{0}{ }^{n}$

Selection Sort:

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
\# Find minimum in b[i..]
\# Move it to position i
$\mathrm{i}=\mathrm{i}+1$

\square| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 4 | 4 | 6 | 6 | 7 | 9 | 9 | 8 | 8 |

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 4 | 6 | 6 | 9 | 9 | 8 | 8 |

Sorting: Changing the Invariant

pre: $b \square^{0}$? post: $b \square^{0}{ }^{n}$

Selection Sort:

inv:

First segment always contains smaller values
$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:

$$
\begin{aligned}
& \mathrm{j}=\text { index of } \min \text { of } b[\mathrm{i} . . n-1] \\
& \operatorname{swap}(b, i, j) \\
& i=i+1
\end{aligned}
$$

	24466	

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 4 | 6 | 7 | 9 | 9 | 8 | 9 |

Selection sort also is an n^{2} algorithm

Partition Algorithm

- Given a list segment $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $b[h . . k]$ and store in j to truthify post:

change:
into
or

pre: b

Sorting with Partitions

- Given a list segment $b[h . . k]$ with some value x in $b[h]:$

- Swap elements of $b[h . . k]$ and store in j to truthify post:

Partition Recursively

Recursive partitions = sorting

- Called QuickSort (why???)
- Popular, fast sorting technique

QuickSort

def quick_sort(b, h, k):
"""Sort the array fragment b[h..k]"""
if $b[h . \mathrm{k}]$ has fewer than 2 elements: return
$j=\operatorname{partition}(b, h, k)$
\# b[h.j $\mathrm{j}-\mathrm{l}]$ <= b[j] <= b[j+l..k]
\# Sort b[h.j $\mathrm{j}-\mathrm{l}$] and b[j+l..k]
quick_sort (b, h, j-l)
quick_sort (b, j+l, k)

- Worst Case:

 array already sorted- Or almost sorted
- n^{2} in that case
- Average Case: array is scrambled
- $\mathrm{n} \log \mathrm{n}$ in that case
- Best sorting time!
pre: b

\mathbf{x}	$?$	
h	i i+1	k

post: b

$<=\mathbf{X}$	\mathbf{X}	$>=\mathbf{X}$

Final Word About Algorithms

- Algorithm:
- Step-by-step way to do something
- Not tied to specific language

List Diagrams

- Implementation:
- An algorithm in a specific language
- Many times, not the "hard part"

Demo Code

- Higher Level Computer Science courses:
- We teach advanced algorithms (pictures)
- Implementation you learn on your own

