
11/30/14	

1	

Linear Search	

def linear_search(b,c,h):

 """Returns: first occurrence of c in b[h..]"""

 # Store in i the index of the first c in b[h..]

 i = h

 # invariant: c is not in b[0..i-1]

 while i < len(b) and b[i] != c:

 i = i + 1

 # post: c is not in b[h..i-1]

 # i >= len(b) or b[i] == c

 return i if i < len(b) else -1

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep the
invariant inv true?	

Binary Search	

• Look for value v in sorted segment b[h..k]	

? 	

h k	

pre: b	

< v	

h i k	

post: b 	

 New statement of the ���
 invariant guarantees ���
 that we get leftmost ���
 position of v if found	

>= v	

< v	

h i j k	

inv: b	

 >= v	

?	

 3 3 3 3 3 4 4 6 7 7 	

0 1 2 3 4 5 6 7 8 9 	

Example b	

h k 	

§  if v is 3, set i to 0	

§  if v is 4, set i to 5	

§  if v is 5, set i to 7	

§  if v is 8, set i to 10	

Binary Search	

i = h; j = k+1;

while i != j:

 New statement of the ���
 invariant guarantees ���
 that we get leftmost ���
 position of v if found	

Looking at b[i] gives linear search from left.	

Looking at b[j-1] gives linear search from right.	

Looking at middle: b[(i+j)/2] gives binary search.	

	

? 	

h k	

pre: b	

< v	

h i k	

post: b 	

 >= v	

< v	

h i j k	

inv: b	

 >= v	

?	

Sorting: Arranging in Ascending Order	

? 	

0 n 	

pre: b	

 sorted	

0 n	

post: b	

sorted	

0 i n	

inv: b	

 ?	

2 4 4 6 6 7 5	

0 i	

2 4 4 5 6 6 7	

0 i	

Insertion Sort:	

i = 0

while i < n:

 # Push b[i] down into its

 # sorted position in b[0..i]

 i = i+1

Insertion Sort: Moving into Position	

i = 0

while i < n:

 push_down(b,i)

 i = i+1

def push_down(b, i):�
j = i

 while j > 0:

 if b[j-1] > b[j]:

 swap(b,j-1,j)

 j = j-1

2 4 4 6 6 7 5	

0 i	

2 4 4 6 6 5 7	

0 i	

2 4 4 6 5 6 7	

0 i	

2 4 4 5 6 6 7	

0 i	

swap shown in the 	

lecture about lists	

Insertion Sort: Performance	

def push_down(b, i):

 """Push value at position i into

 sorted position in b[0..i-1]"""

 j = i

 while j > 0:

 if b[j-1] > b[j]:

 swap(b,j-1,j)

 j = j-1

•  b[0..i-1]: i elements	

•  Worst case:	

§  i = 0: 0 swaps	

§  i = 1: 1 swap	

§  i = 2: 2 swaps	

•  Pushdown is in a loop	

§  Called for i in 0..n	

§  i swaps each time	

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2	

Insertion sort is
an n2 algorithm	

11/30/14	

2	

Algorithm “Complexity”	

•  Given: a list of length n and a problem to solve	

•  Complexity: rough number of steps to solve worst case	

•  Suppose we can compute 1000 operations a second:	

Complexity	

 n=10	

 n=100	

 n=1000	

n	

 0.01 s	

 0.1 s	

 1 s	

n log n	

 0.016 s	

 0.32 s	

 4.79 s	

n2	

 0.1 s	

 10 s	

 16.7 m	

n3	

 1 s	

 16.7 m	

 11.6 d	

2n	

 1 s	

 4x1019 y	

 3x10290 y	

Major Topic in 2110: Beyond scope of this course	

Sorting: Changing the Invariant	

? 	

0 n 	

pre: b	

 sorted	

0 n	

post: b	

sorted	

0 i n	

inv: b	

 ?	

Insertion Sort:	

i = 0

while i < n:

 j = index of min of b[i..n-1]

 swap(b,i,j)

 i = i+1

sorted, ≤ b[i..]	

0 i n	

inv: b	

 ≥ b[0..i-1]	

Selection Sort:	

2 4 4 6 6 8 9 9 7 8 9	

i n	

2 4 4 6 6 7 9 9 8 8 9	

i n	

First segment always	

contains smaller values	

Selection sort also
is an n2 algorithm	

Partition Algorithm	

•  Given a list segment b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 3 5 4 1 6 2 3 8 1 	

b	

h k	

change:	

into	

 1 2 1 3 5 4 6 3 8	

b	

h i k	

 1 2 3 1 3 4 5 6 8	

b	

h i k	

or	

•  x is called the pivot value	

§  x is not a program variable 	

§  denotes value initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

Sorting with Partitions	

•  Given a list segment b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 x ?	

 h k	

pre: b	

 h i i+1 k	

post: b	

 x	

 >= x 	

<= x	

y	

 ?	

y	

 >= y	

<= y	

Partition Recursively	

 Recursive partitions = sorting	

§  Called QuickSort (why???)	

§  Popular, fast sorting technique	

QuickSort	

def quick_sort(b, h, k):

 """Sort the array fragment b[h..k]"""

 if b[h..k] has fewer than 2 elements:

 return

 j = partition(b, h, k)

 # b[h..j–1] <= b[j] <= b[j+1..k]

 # Sort b[h..j–1] and b[j+1..k]

 quick_sort (b, h, j–1)

 quick_sort (b, j+1, k)

•  Worst Case: ���
array already sorted	

§  Or almost sorted	

§  n2 in that case	

•  Average Case: ���
array is scrambled	

§  n log n in that case	

§  Best sorting time!	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

Final Word About Algorithms	

•  Algorithm: 	

§  Step-by-step way to do something	

§ Not tied to specific language	

•  Implementation:	

§ An algorithm in a specific language	

§ Many times, not the “hard part”	

•  Higher Level Computer Science courses:	

§ We teach advanced algorithms (pictures)	

§  Implementation you learn on your own	

List Diagrams	

Demo Code	

