11/30/14

Linear Search

Binary Search

def linear_search(b,c,h):
| "™"Returns: first occurrence of ¢ in blh..]"™
‘ # Store in i the index of the first ¢ in b[h..]

i=h
‘ 2. Is post true when inv is

invariant: ¢ is not in b[0..i-1] true and condition is false?
| while i < len(b) and b[i] I= c:
| i=i+1
‘ 4. Does the repetend keep the
post: ¢ is not in b[h..i-1] invariant inv true?

| # i>=len®)orblil==c
| returniif i <len(b) else -1

Analyzing the Loop

1. Does the initialization
make inv true?

3. Does the repetend make
progress?

* Look for value v in sorted segment b[h. k]

‘ New statement of the

k invariant guarantees

‘ that we get leftmost

position of v if found

if vis 3,setito 0

h k
pre: b‘ ?

h i
post: b ‘ <v ‘ >=v

h i] k
inv: b ‘ <v ? l >=v

h k

0123456789

Exampleb|3 333344677

if vis4,setito5

if vis 5,setito7
if vis 8,setito 10

Binary Search

h k
pre: b‘ ? ‘
- New statement of the
h ! k invariant guarantees
post: b ‘ <v ‘ >=V ‘ that we get leftmost
h i j k | position of v if found
inv: b‘ <V ‘ ? ‘ >=v ‘
i=h; j=k+1;
whilei I=j:

‘ Looking at b[i] gives linear search from left.
Looking at b[j-1] gives linear search from right.
‘ Looking at middle: b[(i+]j)/2] gives binary search.

Sorting: Arranging in Ascending Order

0 n

Insertion Sort:

0 n

0 i n
inv: b sorted \ ? |
i=0 0 i
while { < n: 2446675 |
| # Push b[i] down into its 0 < i

sorted position in b[0..i]
| i=1+1

Insertion Sort: Moving into Position

‘ | £ bgF1] > b:
| | swap(bjl)
|1 i=i

lecture about lists

0

2445667

i=0 0 -i
while i <n: 244667
| i ;
push_down(b,i)
| i= i+l - i
2446657 |
def push_down(b, 1): h
B aaesdT]
while j > 0: swap shown in the 244 o7
i

Insertion Sort:

Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"™"
j=i
while j > 0:
if 11 > bijl:
| swap(bj-1j)

e b[0..i-1]: i elements
* Worst case:

= i=0:0 swaps
= i=1:1swap

= i=2:2swaps

e Pushdown is in a loop

= Called foriin0..n

_— ‘ A
= Insertion sort = iswaps each time
an n? algorithm

‘ Total Swaps: 0+ 1 +2+3 + ... (n-1) = (n-1)*n/2 ‘

Algorithm “Complexity”

e Given: a list of length n and a problem to solve
e Complexity: rough number of steps to solve worst case
* Suppose we can compute 1000 operations a second:

| Complexity | __n=10__|__n=100__|__n=1000 |
n

001s 0.1s Is
nlogn 0016s 0.32s 479 s
n? 0.1s 10's 16.7 m
n’ Is 16.7 m 11.6d
22 Is 4x10"y 3x10*0y

Major Topic in 2110: Beyond scope of this course

11/30/14

Sorting: Changing the Invariant

0 n 0 n

Selection Sort:

0 i n First segment always
inv: b ‘ sorted, < bli..] ‘ = b[0..i-1] ‘ contains smaller values
i n
=0 [24466[89097809]
while i <n: i n
j = index of min of b[i..n-1] [24466]799383809]
swap(b,ij)
. Sele: sort also

is an n? algorithm

Partition Algorithm

e Given a list segment b[h. k] with some value x in b[h]:

h k
pre: b ‘ X . 9 ‘
* Swap elements of b[h..k] and store in j to truthify post:
h ii+l k
post: b ‘ <=x ‘x ‘ >=x ‘
h k
change: b
h i X ¢ x is called the pivot value
into b = X is not a program variable
h i K = denotes value initially in b[h]

or bl123134568

Sorting with Partitions

* Given a list segment b[h. k] with some value x in b[h]:
h k
pre: b ‘ X ‘ 2 ‘

* Swap elements of b[h.k] and store in j to truthify post:
h i+l k
post: b | <=y ‘y‘ >=y lx‘ >=x ‘

Partition Recursively

Recursive partitions = sorting
= Called QuickSort (why???)
= Popular, fast sorting technique

QuickSort

def quick_sort(b, h, k):

Worst Case:
array already sorted

""Sort the array fragment b[h. k]""
= Or almost sorted

if blh.k] has fewer than 2 elements: = n2in that case

Average Case:
array is scrambled

return
j = partition(b, h, k)
b[h.j-1] <= b[j] <= b[j+1.Xk]
Sort b[h.j~1] and b[j+1.k] h

k
quick_sort (b, b, j-1) pre: b | x

quick_sort (b, j+1, k)

= nlogn in that case
= Best sorting time!

Final Word About Algorithms

e Algorithm:

= Step-by-step way to do something

. ; List Diagrams
= Not tied to specific language

* Implementation:

= An algorithm in a specific language

. D Cod
= Many times, not the “hard part” emo =ode

 Higher Level Computer Science courses:
= We teach advanced algorithms (pictures)

= Implementation you learn on your own

