Announcements for This Lecture

11/24/14

Assignment & Lab Next Week

Recall: Horizontal Notation

* A6 s not graded yet » Last Week of Class!
= Done by end of classes

e A7 due Wed, Dec. 10

* Wednesday after classes

= Finish sorting algorithms
= Special final lecture

* Lab held, but is optional
* Keep on top of milestones . . .

R = More invariant practice
* Is your paddle moving?
Lab Today: Office Hours
e Get help on A7 paddle

* Anyone can go to any lab

= Also use lab time on A7

¢ Details about the exam

= Multiple review sessions

0 k len(b)
b ‘ <= sorted ‘ >= ‘

Example of an assertion about an sequence b. It asserts that:
1. b[0.k-1] is sorted (i.e. its values are in ascending order)
2. Everything in b[0.k—1] is < everything in b[k..len(b)-1]

0 h k
b | |

Given index h of the first element of a segment and h h+l
index k of the element that follows that segment,
the number of values in the segment is k — h.

b[h ..k — 1] has k — h elements in it. (h+)-h=1

Partition Algorithm

* Given a sequence b[h..k] with some value x in b[h]:
h k
pre: b ‘ X l 2 ‘

* Swap elements of b[h..k] and store in j to truthify post:

Partition Algorithm Implementation

h i+l k
post: b ‘ <=x ‘x ‘ >=x ‘
h i] k
inv: b ‘ <=x ‘x ‘ ? ‘ >=X ‘

» Agrees with precondition wheni=h, j=k+1
* Agrees with postcondition when j = i+1

def partition(b, h, k): <=X|[Xx ? >=X
"""Partition list b[h..k] around a pivot x = b[h]"" h i |i+l j k
1=h;j=k+1;x = Dbih] [12]3]1 5 0f6 3 8]
invariant: bfh.i-1] <X, b[i] = X, b[j..k] >=x
while i < j-1:

if bli+1] >=x:
Move to end of block.
_swap(b,i+1,j-1)
j=i-1
else: #Dbli+1] <x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is x, and b[i+1.k] >=x
return i

Partition Algorithm Implementation

def partition(b, h, k): <=X|[X ? >=X
"""Partition list b[h..k] around a pivot x = b[h]"" h i |i+l j k
1=hij=k+lx=bln) [12]3]1 5 of6 3 8]
invariant: b(h.-1] < x, bli] = X, b[j. k] >= x
while i <jl: h i+l k
Move to end of block.
_swap(b,i+1,j1) h i j Kk
j=j-1
olse: # bli+1] <x [121]3]o[s 638
_swap(b,i,i+1)
i=i+l h ij k

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >=x 1 210/3/563s

return i "

Dutch National Flag Variant

Sequence of integer values
= ‘red’ = negatives, ‘white’ =0, ‘blues’ = positive
= Only rearrange part of the list, not all

h k
pre: b‘ ‘ ? l ‘
h
post: b‘ ‘ <0 l =0 ‘ >0 l ‘ pre: t=h,
i=k+1,
h t i i k j=
inv: b‘ ‘ <0 . 9 ‘ =0 ‘ >0 ‘ ‘ post: t=i

11/24/14

Dutch National Flag Algorithm

Dutch National Flag Algorithm

def dnf(b, h, k): <0 9 —0| >0
"""Returns: partition points as a tuple (ij)"" h t
t=hi=kelj=k
inv: b[h..t-1] < 0, b[t..i-1] 2, b[i.j] = 0, bj+1..k] > O
while t < i:
if bi-1] < 0:
swap(b,i-1,t)
b=t+1
elif b[i-1] == 0:
| i=il
else:
swap(b,i-1§)
i=ilj=jl
post: b[h..i-1] < 0, b[i..j] = O, b[j+1..k] > 0
return (i, j)

[-1 2]3-1 0[]0 0]6 3

def"ﬂnf(b, h, k): - . <0 5 Zol s0
. R;t;lm:: liar.'tlt;()npomts as a tuple (i) h t i i K
=hi=k+lj=k
#1nv: blh.+-1] < 0, b{t..i-1] 2, b{i.j] = 0, blj+1.k] > O [2310006 3]
while t <i: h ¢ < i
oI O [-1 2]3 -1]o 0 o]6 3]
swap(b,-1,)
t=t+1
elif bli-1] == 0: h t i ik
| =11 [-1 2 -1]3]0 0 o]6 3]
else: A
swap(b,i-1) b j ‘

i=ilj=j1
post: bh..i-1] <0, b[i.j] = 0, b[j+1..k] > 0
return (i, j)

t
[-1 2 -1]o 0 0[3 6 3]
~_~7

Linear Search

Linear Search

* Vague: Find first occurrence of v in b[h..k-1].
* Better: Store an integer in i to truthify result condition post:
post: 1. visnotinb[h..i-1]
2.i=k OR v=bli]
h k
pre: b ‘ 9 ‘

h i k

post: b ‘ v not here ‘ v ‘

OR i
h k

b ‘ v not here ‘

h k

pre: b ‘ ? ‘
h i k

post: b ‘ v not here ‘ v ‘ ? ‘
OR i
h k

b ‘ v not here ‘
h i k

inv: b ‘ v not here ? ‘

Linear Search

Binary Search

def linear_search(b,c,h):
| "™Returns: first occurrence of ¢ in blh..]"

‘ # Store in i the index of the first ¢ in bh,] |+ Does the initialization
i-n make inv true?
i=

‘ 2. Is post true when inv is
invariant: ¢ is not in b[0..i-1] true and condition is false?
while i < len(b) and bl[i] |=c:
| i=i+1

‘ 4. Does the repetend keep the
post: ¢ is not in b[h..i-1] invariant inv true?

i>=len(b) or b[i] ==
return i if i < len(b) else -1

Analyzing the Loop

3. Does the repetend make
progress?

* Vague: Look for v in sorted sequence segment b[h..k].

* Better:
= Precondition: b[h..k-1] is sorted (in ascending order).
= Postcondition: b[h..i] <=v and v <b[i+1.k-1]

* Below, the array is in non-descending order:

h k
pre: b‘ 9 ‘
h i k | Called binary search
because each iteration
post:b| =V ‘ >y | of the loop cuts the
h i jj k| array segment still to
inv: b ‘ <v ? l >v be processed in half

