
11/24/14	

1	

Announcements for This Lecture	

Assignment & Lab	

 Next Week	

•  Last Week of Class!	

§  Finish sorting algorithms	

§  Special final lecture	

•  Lab held, but is optional	

§  More invariant practice	

§  Also use lab time on A7	

•  Details about the exam	

§  Multiple review sessions	

•  A6 is not graded yet	

§  Done by end of classes	

•  A7 due Wed, Dec. 10	

•  Wednesday after classes	

•  Keep on top of milestones	

•  Is your paddle moving?	

§  Lab Today: Office Hours	

•  Get help on A7 paddle	

•  Anyone can go to any lab	

Recall: Horizontal Notation	

	

	

Example of an assertion about an sequence b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]	

	

	

 	

Given index h of the first element of a segment and	

index k of the element that follows that segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

 	

b 	

0 h k	

 	

h h+1	

(h+1) – h = 1	

 	

b <= sorted >=	

0 k len(b)	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

•  Agrees with precondition when i = h, j = k+1	

•  Agrees with postcondition when j = i+1 	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

1 2 1 3 5 0 6 3 8	

h i i+1 j k	

1 2 1 3 0 5 6 3 8	

h i j k	

1 2 1 0 3 5 6 3 8	

h i j k	

Dutch National Flag Variant	

•  Sequence of integer values	

§  ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive	

§  Only rearrange part of the list, not all	

? 	

h k	

pre: b	

 < 0 = 0 > 0 	

h k	

post: b	

inv: b < 0 ? = 0 > 0	

h t i j k	

pre: t = h, ���
 i = k+1,	

 j = k	

post: t = i	

11/24/14	

2	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

 t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 swap(b,i-1,t)

 t = t+1

 elif b[i-1] == 0:

 i = i-1

 else:

 swap(b,i-1,j)

 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

 t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 swap(b,i-1,t)

 t = t+1

 elif b[i-1] == 0:

 i = i-1

 else:

 swap(b,i-1,j)

 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

-1 -2 -1 3 0 0 0 6 3	

h t i j k	

-1 -2 -1 0 0 0 3 6 3	

h t j k	

Linear Search	

•  Vague: Find first occurrence of v in b[h..k-1].	

•  Better: Store an integer in i to truthify result condition post:	

	

post: 1. v is not in b[h..i-1]	

 	

 2. i = k OR v = b[i]	

v not here 	

 i	

h k	

?	

h k	

pre: b	

 v not here v ? 	

h i k 	

 post: b	

 b	

OR	

Linear Search	

v not here 	

 i	

h k	

?	

h k	

pre: b	

 v not here v ? 	

h i k 	

 post: b	

 b	

OR	

 v not here ? 	

h i k 	

 inv: b	

Linear Search	

def linear_search(b,c,h):

 """Returns: first occurrence of c in b[h..]"""

 # Store in i the index of the first c in b[h..]

 i = h

 # invariant: c is not in b[0..i-1]

 while i < len(b) and b[i] != c:

 i = i + 1

 # post: c is not in b[h..i-1]

 # i >= len(b) or b[i] == c

 return i if i < len(b) else -1

Analyzing the Loop	

1.  Does the initialization
make inv true?	

2.  Is post true when inv is
true and condition is false?	

3.  Does the repetend make
progress?	

4.  Does the repetend keep the
invariant inv true?	

Binary Search	

• Vague: Look for v in sorted sequence segment b[h..k].	

• Better:	

§ Precondition: b[h..k-1] is sorted (in ascending order). 	

§ Postcondition: b[h..i] <= v and v < b[i+1..k-1] 	

	

• Below, the array is in non-descending order:	

? 	

h k	

pre: b	

<= v	

h i k	

post: b	

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half	

> v	

< v	

h i j k	

inv: b	

 > v	

?	

