
11/16/14	

1	

Challenge: Breaking Up Software	

Function Bodies	

Function Calls	

Function Bodies	

Coordinating
groups must
agree on the	

specifications
of functions in
the module.	

 Model	

• 	

Defines and
	

manages the data	

• 	

Responds to the
	

controller requests	

View	

• 	

Displays model to
	

the user	

• 	

Provides interface
	

for the controller	

Controller	

• 	

Updates model in
	

response to events	

• 	

Updates view with
	

model changes	

	

Model-View-Controller Pattern	

Calls the
methods or	

functions of	

Division
can apply
to classes

or modules	

MVC in this Course	

Model	

•  A3: Color classes	

§  RGB, CMYK & HSV

•  A6: Database, Cluster

§  Data is always in model	

•  A7: Ball, Brick, etc..	

§  All shapes/geometry	

Controller	

•  A3: a3app.py

§  Hidden classes	

•  A6: ClusterGroup

•  Also visualizer

•  A7: Breakout

§  Controller class for you!	

A Standard GUI Application	

Update display/view	

No change to models	

Check for user input	

Process user input	

Update the models	

Controller	

View	

Event���
Loop	

while-loop	

Must We Write this Loop Each Time?	

while program_is_running:

 # Get information from mouse/keyboard

 # Handled by OS/GUI libraries

 # Your code goes here

 controller.update()

 # Draw stuff on the screen

 # Handled by OS/GUI libraries

Controller object	

Method call	

(for loop body)	

 • Write loop body ���

 in a controller.	

• OS/GUI handles 	

 everything else.	

Loop Invariants Revisited	

Normal Loops	

 x = 0

 i = 2

 # x = sum of squares of 2..i

 while i <= 5:

 x = x + i*i

 i = i +1

 # x = sum of squares of 2..5

	

Controller	

while program_running:

 # Get input

 # Your code called here

 controller.update()

 # Draw	

Properties of
“external” vars	

What are the 	

“external” vars?	

controller is an object.
It will have attributes!	

11/16/14	

2	

Model	

Subclasses of GObject

 • GEllipse, GImage, …	

 • Often more than one	

View	

Class GView

 • Do not subclass!	

 • Provided in Game	

Controller	

Subclass of Game

Model-View-Controller in CS 1110	

Classes in	

game2d.py

Method draw

in GObject	

Attribute view

(inherited)	

Other attributes

(defined by you)	

Attribute Invariants = Loop Invariants	

•  Attributes are a way to
store value between calls	

§  Not part of call frame	

§  Variables outside loop	

•  A controller needs	

§  Loop attributes	

§  Initialization method ���

(for loop, not __init__)	

§  Method for body of loop	

•  Attribute descriptions,
invariants are important	

game = Game(…) #constructor

…

game.init() #Loop initialization

inv: game attributes are …

while program_running:

 # Get input

 # Your code goes here

 game.update(time_elapsed)

 game.draw()

post: game attributes are …

	

Example: Animation	

class Animation(GameApp):

 """Application to an ellipse in a circle."""

 def init(self):

 """Special loop initialization method."""

 …

 def update(self,dt):

 """Change the ellipse position."""

 …

 def draw(self):

 """Draw the ellipse"""

 …

See animation.py

Parent class that ���
does hard stuff	

Loop initialization	

Do NOT use __init__

Loop body

Use method draw()
defined in GObject

What Attributes to Keep: Touch	

•  Attribute touch in GView

§  The mouse press position	

§  Or None if not pressed	

§  Use self.view.touch inside

controller (Game) methods	

•  Compare touch, last position	

§  last None, touch not None:���
Mouse button pressed	

§  last not None, touch None:���
Mouse button released	

§  last and touch not None:���
Mouse dragged (button down)	

See touch.py

Previous
Touch	

Current
Touch	

Line segment = 2 points	

More Attributes: Checking Click Types	

•  Double click = 2 fast clicks	

•  Count number of fast clicks	

§  Add an attribute clicks

§  Reset to 0 if not fast enough	

•  Time click speed	

§  Add an attribute time

§  Set to 0 when mouse released	

§  Increment when not pressed���

(e.g. in loop method update())	

§  Check time when next pressed	

See touch.py

time	

pressed	

released	

 pressed	

released	

Is it fast enough?	

State: Changing What the Loop Does	

•  State: Current loop activity	

§  Playing game vs. pausing	

§  Ball countdown vs. serve	

•  Add an attribute state

§  Method update() checks state	

§  Executes correct helper	

•  How do we store state?	

§  State is an enumeration; ���

one of several fixed values 	

§  Implemented as an int	

§  Global constants are values	

See state.py

State ANIMATE_CIRCLE

State ANIMATE_HORIZONTAL

