Challenge: Breaking Up Software

11/16/14

Model-View-Controller Pattern

Calls the
methods or
functions of

Division

can apply Controller
to classes ® Updates model in

or modules response to events
/ ¢ Updates view with \
model changes
Model
® Defines and
manages the data

® Responds to the
controller requests

________ e Function Bodies | Qoordinating
1Game Engine ar groups must
i X |
o Function Calls ——% . | agree on the
2 | Phywree h Rendering . N
g :M Discrete Eagine | Specifications
g : : . A
% AlEngine S'é":gl:?" Function Bodies of functions in
& [(e.g Pathfinding) the module.
E | Compiler Data Management Layer
L5 o] | S I S - I iy
b}
.E"% Character Character ul Models Sounds i
&”‘, = Scripts Data Elements || and Textures
LT L L L
MYVC in this Course
Model Controller

A3: Color classes

= RGB, CMYK & HSV
A6: Database, Cluster

= Data is always in model
A7: Ball, Brick, etc..

= All shapes/geometry

* A3: adapp.py
= Hidden classes
* AG6: ClusterGroup
¢ Also visualizer
e A7: Breakout

= Controller class for you!

A Standard GUI Application

while-loop
Check for user input
Process user input
Update the models
Event P
Loop

Must We Write this Loop Each Time?

while program_is_running:

Get information from mouse/keyboard

Handled by 0S/GUI libraries

Method call
(for loop body)

* Write loop body
in a controller.

Your code g¢
controller.update()

Controller object |y the sereen

Handled by 0S/GUI libraries

* OS/GUI handles
everything else.

Loop Invariants Revisited

Normal Loops Controller
Properties of What are the

x=0 “external” vars “external” vars?

=2 while program_running:

x = sum of squares of 2.1 # Get input

while | <= ‘5:. # Your code called here
X=x+i controller.update()
i=1+1 &

x = sum of squares of 2..5

controller is an object.
It will have attributes!

Model-View-Controller in CS 1110

11/16/14

Controller
Other attributes Subclass of Game Attribute view
(defined by you) (inherited)
Model Method draw

Subclasses of GObject in GObject
- GEllpse, GImage,... >
* Often more than one

Classes in

gameld.py

Attribute Invariants = Loop Invariants

* Attributes are a way to
store value between calls

game = Game(...) #constructor
* Not part of call frame game.init() #Loop initialization
inv: game attributes are ...
while program_running:

Get input

Your code goes here

game.update(time_elapsed)

= Variables outside loop
e A controller needs
= Loop attributes

= Initialization method
(for loop, not __init__)

= Method for body of loop

* Attribute descriptions,
invariants are important

game.draw()
post: game attributes are ...

Example: Animation

class Animation(GameApp);

mppplication to an See animation.py
does hard stuff
def init(self): 0cs nard st
"""Special loop initialization method.""

Loop initialization
def update(self,dt): Do NOT use __init__

"""Change the ellipse position."""

Loop body
def draw(self):
""Draw the ellipse"" Use method draw()
defined in GObject

What Attributes to Keep: Touch

e Attribute touch in GView

.. Lin ment = 2 poin
= The mouse press position e segment points

= Or None if not pressed \
= Use self.view.touch inside
controller (Game) methods @ ,
* Compare touch, last position

= last None, touch not None: \ -
Mouse button pressed uch /

Pre:
To
= last not None, touch None: S~

Mouse button released
See touch.py

= last and touch not None:
Mouse dragged (button down)

More Attributes: Checking Click Types

e Double click = 2 fast clicks
¢ Count number of fast clicks
= Add an attribute clicks

Is it fast enough?

pressed released
= Reset to 0 if not fast enough — —
¢ Time click speed released pressed
= Add an attribute time
= Set to 0 when mouse released me

= Increment when not pressed
(e.g. in loop method update())

See touch.py

= Check time when next pressed

State: Changing What the Loop Does

 State: Current loop activity State ANIMATE_CIRCLE

= Playing game vs. pausing as s

= Ball countdown vs. serve /: \.
* Add an attribute state =\ J

= Method update() checks state X Pt

= Executes correct helper
* How do we store state?

= State is an enumeration;
one of several fixed values

= Implemented as an int

= Global constants are values

