Lecture 23

Designing Sequence Algorithms

Announcements for This Lecture

Exams

Assignment \& Lab

- Similar scores to last time
- Mean: 76, Median: 79
- Class question was hard
- Good grade distribution
- A: Mid 80s up
- B: Mid-low 60s to mid 80s
- C: 35 to mid-low 60s
- Final should be similar
- More time, more questions
- A6 is due on Thursday
- See consultants early!
- Let us know about problems
- Now open for submissions
- A7 posted on Thursday
- Today's lab is on invariants
- Due after Thanksgiving
- No official lab next week
- But will be there on Tues

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:

1. $\mathrm{b}[0 . . \mathrm{k}-1]$ is sorted (i.e. its values are in ascending order)
2. Everything in $\mathrm{b}[0 . . \mathrm{k}-1]$ is \leq everything in $\mathrm{b}[\mathrm{k} . . \operatorname{len}(\mathrm{b})-1]$

Given index h of the first element of a segment and

$$
(\mathrm{h}+1)-\mathrm{h}=1
$$ $\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$ has k - h elements in it. the number of values in the segment is $\mathrm{k}-\mathrm{h}$.

Developing Algorithms on Sequences

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "generalizes" the precondition and postcondition
- The invariant is true at the beginning and at the end
- The four loop design questions (memorize them)

1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does the body make progress toward termination?
4. How does the body keep the invariant true?

Generalizing Pre- and Postconditions

- Dutch national flag: tri-color
- Sequence of 0..n-1 of red, white, blue "pixels"
- Arrange to put reds first, then whites, then blues

Generalizing Pre- and Postconditions

- Finding the minimum of a sequence.

- Put negative values before nonnegative ones.

Generalizing Pre- and Postconditions

- Finding the minimum of a sequence.

- Put negative values before nonnegative ones.

Generalizing Pre- and Postconditions

- Finding the minimum of a sequence.

- Put negative values before nonnegative ones.

Generalizing Pre- and Postconditions

- Finding the minimum of a sequence.

- Put negative values before nonnegative ones.

Generalizing Pre- and Postconditions

- Finding the minimum of a sequence.

- Put negative values before nonnegative ones.

$0{ }^{0}$				and $\mathrm{n}>=0$	(values in $0 . . \mathrm{n}$ are unknown)
pre: b	?				
n					
post: b			$>=0$		
			n	pre: $\mathrm{k}=0$,	
$\underset{\text { inv: }}{\substack{\text { in/18/14 }}}$	<0	?	$\begin{gathered} >=0 \\ \text { quence Algorithms } \end{gathered}$	$\mathrm{j}=\mathrm{n}$	$\text { are unknown }{ }_{10}$

Partition Algorithm

- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

change:
into

- x is called the pivot value
- x is not a program variable
- denotes value initially in b[h]

Partition Algorithm

- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ and store in j to truthify post:

change:
into
or

- x is called the pivot value
- x is not a program variable
- denotes value initially in b[h]

Partition Algorithm

- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of b[h..k] and store in j to truthify post:

Partition Algorithm

- Given a sequence $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of $b[h . . k]$ and store in j to truthify post:

- Agrees with precondition when $\mathrm{i}=\mathrm{h}, \mathrm{j}=\mathrm{k}+1$
- Agrees with postcondition when $\mathrm{j}=\mathrm{i}+1$

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $\mathrm{x}=\mathrm{b}[\mathrm{h}]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
\# invariant: $\mathrm{b}[\mathrm{h} . \mathrm{i}-\mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]=\mathrm{x}, \mathrm{b}[\mathrm{j} . \mathrm{k}]>=\mathrm{x}$
while $\mathrm{i}<\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
_swap(b,i+l,j-l)
$j=j-1$
else: \# b[i+1] < x
_swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
\# post: b[h.i-l $]<\mathrm{x}, \mathrm{b}[\mathrm{i}]$ is x , and $\mathrm{b}[\mathrm{i}+\mathrm{l} . \mathrm{k}]>=\mathrm{x}$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
\# invariant: $\mathrm{b}[\mathrm{h} . . \mathrm{i}-1 \mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]=\mathrm{x}, \mathrm{b}[\mathrm{j} . \mathrm{k}]>=\mathrm{x}$

$<=\mathbf{x}$		\mathbf{x}	$?$			$>=\mathbf{x}$		
h	i	$\mathrm{i}+1$		j		k		
1	2	3	1	5	0	6	3	8

while i < $\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
_swap(b,i+l,j-l)
$j=j-1$
else: \# b[i+1] < x
_swap(b,i,i+l)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i} \mathrm{i}-\mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]$ is x , and $\mathrm{b}[\mathrm{i}+\mathrm{l} . . \mathrm{k}]>=\mathrm{x}$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h] " "$
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
\# invariant: $\mathrm{b}[\mathrm{h} . . \mathrm{i}-1 \mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]=\mathrm{x}, \mathrm{b}[\mathrm{j} . \mathrm{k}]>=\mathrm{x}$
while $\mathrm{i}<\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.

$<=\mathbf{x}$	\mathbf{x}	?	$>=\mathbf{x}$	
h	i	i+1		k
12	3	150	63	8

_swap(b,i+l,j-l)
$j=j-1$
else: \#b[i+1] < x
_swap(b,i,i+1)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i} \mathrm{i}-\mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]$ is x , and $\mathrm{b}[\mathrm{i}+\mathrm{l} . . \mathrm{k}]>=\mathrm{x}$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
\# invariant: $\mathrm{b}[\mathrm{h} . . \mathrm{i}-1 \mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]=\mathrm{x}, \mathrm{b}[\mathrm{j} . \mathrm{k}]>=\mathrm{x}$
while $\mathrm{i}<\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.

$<=\mathbf{x}$	\mathbf{x}	?	$>=\mathbf{x}$	
h	i	i+1		k
12	3	150	63	8

_swap(b,i+l,j-l)
$j=j-1$
else: \#b[i+1] < x
_swap(b,i,i+1)
$\mathrm{i}=\mathrm{i}+\mathrm{l}$

h	i				$\mathrm{i}+1$	j		k
1	2	1	3	5	0	6	3	8

h	i				j			
			k					
1	2	1	3	0	5	6	3	8

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i}-\mathrm{l}]<\mathrm{x}$, $\mathrm{b}[\mathrm{i}]$ is x , and $\mathrm{b}[\mathrm{i}+1 . . \mathrm{k}]>=\mathrm{x}$
return i

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot $x=b[h]$ """
$\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+\mathrm{l} ; \mathrm{x}=\mathrm{b}[\mathrm{h}]$
\# invariant: $\mathrm{b}[\mathrm{h} . . \mathrm{i}-1 \mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]=\mathrm{x}, \mathrm{b}[\mathrm{j} . \mathrm{k}]>=\mathrm{x}$
while $\mathrm{i}<\mathrm{j}-\mathrm{l}$:
if $b[i+1]>=x$:
\# Move to end of block.
_swap(b,i+l,j-1)
$j=j-1$
else: \#b[i+1] < x
_swap(b,i,i+1)
$\mathrm{i}=\mathrm{i}+1$
\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i} \mathrm{i}-\mathrm{l}]<\mathrm{x}, \mathrm{b}[\mathrm{i}]$ is x , and $\mathrm{b}[\mathrm{i}+\mathrm{l} . . \mathrm{k}]>=\mathrm{x}$
return i

h	i				$\mathrm{i}+1$	j		k
1	2	1	3	5	0	6	3	8

h	i				j			
l								
1	2	1	3	0	5	6	3	8

h			i	j			k	
1	2	1	0	3	5	6	3	8

Dutch National Flag Variant

- Sequence of integer values
- 'red' $=$ negatives, ' white' $=0$, 'blues' $=$ positive
- Only rearrange part of the list, not all

inv:

Dutch National Flag Variant

- Sequence of integer values
- 'red' $=$ negatives, ' white' $=0$, 'blues' $=$ positive
- Only rearrange part of the list, not all

inv: b

$$
\begin{aligned}
& \text { pre: } \mathrm{t}=\mathrm{h} \text {, } \\
& \mathrm{i}=\mathrm{k}+1 \text {, } \\
& \mathrm{j}=\mathrm{k} \\
& \text { post: } \mathrm{t}=\mathrm{i}
\end{aligned}
$$

Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
"""Returns: partition points as a tuple (i,j)"""
$\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+\mathrm{l}, \mathrm{j}=\mathrm{k} ;$
\# inv: $\mathrm{b}[\mathrm{h} . \mathrm{t}-\mathrm{l}]<0, \mathrm{~b}[\mathrm{t} . \mathrm{i}-1]$?, $\mathrm{b}[\mathrm{i} . \mathrm{j} \mathrm{j}]=0, \mathrm{~b}[j+1 . . \mathrm{k}]>0$

while t < i :
if $\mathrm{b}[\mathrm{i}-1]<0$:
$\operatorname{swap}(b, i-1, t)$
$t=t+1$
elif $b[i-1]==0$:

$$
\mathrm{i}=\mathrm{i}-\mathrm{l}
$$

else:
swap(b,i-l, ${ }^{\text {j }}$)
$\mathrm{i}=\mathrm{i}-\mathrm{l} ; \mathrm{j}=\mathrm{j}-1$
\# post: b[h.i-li] < 0, b[i..j] = 0, b[j+l..k] > 0
return (i, j)

Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
"""Returns: partition points as a tuple (i,j)"""
$\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+\mathrm{l}, \mathrm{j}=\mathrm{k}$;
\# inv: b[h.t-l] < 0, b[t..i-l] ?, b[i..j] = $0, b[j+1 . . k]>0$
while t < i :
if $b[i-1]<0$:
$\operatorname{swap}(b, i-1, t)$

$$
t=t+l
$$

elif $b[i-1]==0$:

$$
\mathrm{i}=\mathrm{i}-\mathrm{l}
$$

else:

```
swap(b,i-1,j)
```

$\mathrm{i}=\mathrm{i}-\mathrm{l} ; \mathrm{j}=\mathrm{j}-\mathrm{l}$
\# post: b[h.i-i-l] < $0, b[i . . j]=0, b[j+l . . k]>0$
return (i, j)

Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
"""Returns: partition points as a tuple (i,j)"""
$\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+\mathrm{l}, \mathrm{j}=\mathrm{k}$;
\# inv: b[h.t-l] < 0, b[t..i-l] ?, b[i..j] = $0, b[j+1 . . k]>0$
while t < i :
if $b[i-1]<0$:
$\operatorname{swap}(b, i-1, t)$

$$
t=t+l
$$

elif $b[i-1]==0$:

$$
\mathrm{i}=\mathrm{i}-\mathrm{l}
$$

else:

$$
\operatorname{swap}(\mathrm{b}, \mathrm{i}-1, \mathrm{j})
$$

$$
\mathrm{i}=\mathrm{i}-\mathrm{l} ; \mathrm{j}=\mathrm{j}-\mathrm{l}
$$

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i}-\mathrm{l}]<0, \mathrm{~b}[\mathrm{i} . \mathrm{j}]=0, \mathrm{~b}[\mathrm{j}+\mathrm{l} . . \mathrm{k}]>0$
return (i, j)

Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
"""Returns: partition points as a tuple (i,j)"""
$\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+\mathrm{l}, \mathrm{j}=\mathrm{k}$;
\# inv: b[h.t-l] < 0, b[t..i-l] ?, b[i..j] $=0, b[j+1 . . k]>0$
while t < i :
if $b[i-1]<0$:
$\operatorname{swap}(\mathrm{b}, \mathrm{i}-1, \mathrm{t})$

$h^{<0}$	t ?	$i^{=0}$	>0 k
$\begin{array}{ll}-1 & -2\end{array}$	$3-10$	$0 \quad 0$	63

$t=t+1$
elif $b[i-1]==0$:

$$
\mathrm{i}=\mathrm{i}-1
$$

else:

$$
\begin{aligned}
& \operatorname{swap}(b, i-1, j) \\
& i=i-1 ; j=j-1
\end{aligned}
$$

\# post: $\mathrm{b}[\mathrm{h} . \mathrm{i}-\mathrm{l}]<0, \mathrm{~b}[\mathrm{i} . \mathrm{j}]=0, \mathrm{~b}[\mathrm{j}+\mathrm{l} . . \mathrm{k}]>0$ return (i, j)

Will Finish This Next Week

