Lecture 23 Designing Sequence Algorithms

Announcements for This Lecture

Exams

- Similar scores to last time
 - Mean: 76, Median: 79
 - Class question was hard
- Good grade distribution
 - A: Mid 80s up
 - **B**: Mid-low 60s to mid 80s
 - **C**: 35 to mid-low 60s
- Final should be similar
 - More time, more questions

Assignment & Lab

- A6 is due on Thursday
 - See consultants early!
 - Let us know about problems
 - Now open for submissions
- A7 posted on Thursday
- Today's lab is on invariants
 - Due after Thanksgiving
 - No official lab next week
 - But will be there on Tues

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:

- 1. b[0..k–1] is sorted (i.e. its values are in ascending order)
- 2. Everything in b[0..k–1] is \leq everything in b[k..len(b)–1]

Given index h of the first element of a segment and index k of the element that follows that segment, the number of values in the segment is k - h.

b[h .. k - 1] has k - h elements in it.

h h+1

(h+1) - h = 1

Developing Algorithms on Sequences

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "generalizes" the precondition and postcondition
 - The invariant is true at the beginning and at the end
- The four loop design questions (memorize them)
 - 1. How does loop start (how to make the invariant true)?
 - 2. How does it stop (is the postcondition true)?
 - 3. How does the body make progress toward termination?
 - 4. How does the body keep the invariant true?

- Dutch national flag: tri-color
 - Sequence of 0...n-1 of red, white, blue "pixels"
 - Arrange to put reds first, then whites, then blues

• Put negative values before nonnegative ones.

• Put negative values before nonnegative ones.

• Put negative values before nonnegative ones.

• Put negative values before nonnegative ones.

• Put negative values before nonnegative ones.

• Given a sequence b[h..k] with some value x in b[h]:

Given a sequence b[h..k] with some value x in b[h]:

• Given a sequence b[h..k] with some value x in b[h]:

• Given a sequence b[h..k] with some value x in b[h]:

- Agrees with precondition when i = h, j = k+1
- Agrees with postcondition when j = i+1

```
def partition(b, h, k):
  """Partition list b[h..k] around a pivot x = b[h]"""
  i = h; j = k+1; x = b[h]
  # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
  while i < j-1:
    if b[i+1] >= x:
                                  partition(b,h,k), not partition(b[h:k+1])
       # Move to end of block.
                                  Remember, slicing always copies the list!
       \_swap(b,i+1,j-1)
                                     We want to partition the original list
      j = j - 1
    else: # b[i+1] < x
       \_swap(b,i,i+1)
       i = i + 1
  # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
  return i
```

```
def partition(b, h, k):
   """Partition list b[h..k] around a pivot x = b[h]"""
  i = h; j = k+1; x = b[h]
   # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
  while i < j-1:
     if b[i+1] >= x:
        # Move to end of block.
        \_swap(b,i+1,j-1)
        j = j - 1
     else: # b[i+1] < x
        \_swap(b,i,i+1)
        i = i + 1
  # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
  return i
```

<= X		X	?			>= x						
h		i	i+	1		j		k				
1	2	3	1	5	0	6	3	8				

```
def partition(b, h, k):
                                                                         ?
                                                          <= X
                                                                 X
  """Partition list b[h..k] around a pivot x = b[h]"""
                                                                 i
                                                                    i+1
                                                          h
  i = h; j = k+1; x = b[h]
                                                                 3 1 5 0
                                                          1
                                                             2
  # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
  while i < j-1:
                                                                    i
                                                                        i+1
                                                         h
     if b[i+1] >= x:
                                                                     3 5 0 6 3 8
                                                          1 2
       # Move to end of block.
       \_swap(b,i+1,j-1)
       j = j - 1
     else: # b[i+1] < x
       \_swap(b,i,i+1)
       i = i + 1
  # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
  return i
```

>= X

6 3

i

k

8

k

```
def partition(b, h, k):
                                                                      ?
                                                        <= X
                                                               X
                                                                               >= X
  """Partition list b[h..k] around a pivot x = b[h]"""
                                                               i
                                                                  i+1
                                                        h
                                                                                    k
  i = h; j = k+1; x = b[h]
                                                              3 1 5 0
                                                                             6 3
                                                        1
                                                           2
                                                                                    8
  # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
  while i < j-1:
                                                        h
                                                                  i
                                                                     i+1
                                                                             1
                                                                                    k
    if b[i+1] >= x:
                                                                  3
                                                                     5 0 6 3 8
                                                        1 2
       # Move to end of block.
       \_swap(b,i+1,j-1)
                                                        h
                                                                                    k
                                                                  1
       j = j - 1
                                                                      0 5 6 3 8
                                                        1 2 1
                                                                  3
    else: # b[i+1] < x
       \_swap(b,i,i+1)
       i = i + 1
  # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
  return i
```

```
def partition(b, h, k):
                                                                      ?
                                                       <= x
                                                              X
                                                                              >= X
  """Partition list b[h..k] around a pivot x = b[h]"""
                                                              i
                                                                 i+1
                                                       h
                                                                                   k
  i = h; j = k+1; x = b[h]
                                                                 1 5 0
                                                                            6 3
                                                        1
                                                           2
                                                              3
                                                                                   8
  # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
  while i < j-1:
                                                                 1
                                                                     i+1
                                                       h
                                                                            1
                                                                                    k
    if b[i+1] >= x:
                                                                  3
                                                                     5 0
                                                                            6 3 8
                                                          2
                                                        1
       # Move to end of block.
       \_swap(b,i+1,j-1)
                                                       h
                                                                                   k
       j = j - 1
                                                                         5 6 3 8
                                                           2 1
                                                                  3
                                                                     0
    else: # b[i+1] < x
       \_swap(b,i,i+1)
       i = i + 1
                                                       h
                                                                                   k
                                                                      1
  # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
                                                                     3 5 6 3 8
                                                           2 1
                                                        1
                                                                  0
  return i
```

Dutch National Flag Variant

- Sequence of integer values
 - 'red' = negatives, 'white' = 0, 'blues' = positive
 - Only rearrange part of the list, not all

Dutch National Flag Variant

- Sequence of integer values
 - 'red' = negatives, 'white' = 0, 'blues' = positive
 - Only rearrange part of the list, not all


```
def dnf(b, h, k):
                                                                               ?
                                                                  < 0
                                                                                         = 0
                                                                                                  >0
  ""Returns: partition points as a tuple (i,j)"""
                                                                                       i
                                                                h
                                                                                                     k
                                                                           t
  t = h; i = k+1, j = k;
                                                                -1 -2 3 -1 0
                                                                                                    3
                                                                                       0
                                                                                            0
                                                                                                6
  # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
  while t < i:
     if b[i-1] < 0:
        swap(b,i-1,t)
        t = t+1
     elif b[i-1] == 0:
        i = i - 1
     else:
        swap(b,i-1,j)
        i = i-1; j = j-1
  # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
  return (i, j)
```

def dnf(b, h, k):		< 0		?		= 0		>0	
"""Returns: partition points as a tuple (i,j)"""			t			i	i		k
t = h; i = k+1, j = k;	-1	-2	3	-1	0	0	0	6	3
# inv: $b[ht-1] < 0$, $b[ti-1]$?, $b[ij] = 0$, $b[j+1k] > 0$		-		•	<u> </u>		0		U
while t < i:			t		1		j		k
if b[i-1] < 0:	-1	-2	3	-1	0	0	0	6	3
swap(b,i-1,t)							Į		
t = t+1									
elif b[i-1] == 0:									
i = i-1									
else:									
swap(b,i-1,j)									
i = i-1; j = j-1									
# post: $b[hi-1] < 0$, $b[ij] = 0$, $b[j+1k] > 0$									
return (i, j)									

<pre>def dnf(b, h, k): """Returns: partition points as a tuple (i,j)""" t = h; i = k+1, j = k;</pre>)	?			=0		>	• 0
			t 3 -	-1	0	i 0	j 0	6	k 3
<pre># inv: b[ht-1] < 0, b[ti-1] ?, b[ij] = 0, b[j+1k] > 0 while t < i:</pre>	h	I	t		← 1				k
if b[i-1] < 0: $swap(b,i-1,t)$	-1 -	-2	3	-1	0	0	0	6	3
t = t+1 elif b[i-1] == 0:	h			t	i		j		k
i = i-1	-1 -	-2		3	0	0	0	6	3
else: swap(b,i-1,j) i = i-1; j = j-1			ĸ						
# post: b[hi-1] < 0, b[ij] = 0, b[j+1k] > 0 return (i, j)									

11/18/14

Will Finish This Next Week