
Designing Sequence���
Algorithms	

Lecture 23 	

	

Announcements for This Lecture	

Exams	

 Assignment & Lab	

•  A6 is due on Thursday	

§  See consultants early!	

§  Let us know about problems	

§  Now open for submissions	

•  A7 posted on Thursday	

•  Today’s lab is on invariants	

§  Due after Thanksgiving	

§  No official lab next week	

§  But will be there on Tues	

11/18/14	

 2	

Sequence Algorithms	

•  Similar scores to last time	

•  Mean: 76, Median: 79	

•  Class question was hard	

•  Good grade distribution	

§  A: Mid 80s up	

§  B: Mid-low 60s to mid 80s	

§  C: 35 to mid-low 60s	

•  Final should be similar	

§  More time, more questions	

Horizontal Notation for Sequences	

	

	

Example of an assertion about an sequence b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]	

	

	

 	

Given index h of the first element of a segment and	

index k of the element that follows that segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

 	

b 	

0 h k	

 	

h h+1	

(h+1) – h = 1	

 	

b <= sorted >=	

0 k len(b)	

11/18/14	

 Sequence Algorithms	

 3	

Developing Algorithms on Sequences	

•  Specify the algorithm by giving its precondition ���
and postcondition as pictures.	

•  Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition 	

§  The invariant is true at the beginning and at the end	

•  The four loop design questions (memorize them)	

1.  How does loop start (how to make the invariant true)?	

2.  How does it stop (is the postcondition true)?	

3.  How does the body make progress toward termination?	

4.  How does the body keep the invariant true?	

11/18/14	

 Sequence Algorithms	

 4	

Generalizing Pre- and Postconditions	

•  Dutch national flag: tri-color 	

§  Sequence of 0..n-1 of red, white, blue "pixels"	

§  Arrange to put reds first, then whites, then blues 	

? 	

0 n	

pre: b	

 reds whites blues 	

0 n	

post: b	

(values in 0..n-1 are unknown)	

inv: b reds whites ? blues	

0 j k l n	

Make the red, white, blue
sections initially empty: 	

•  Range i..i-1 has 0 elements	

•  Main reason for this trick	

Changing loop variables turns
invariant into postcondition.	

	

	

11/18/14	

 Sequence Algorithms	

 5	

Generalizing Pre- and Postconditions	

•  Finding the minimum of a sequence. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

(values in 0..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

>= 0	

11/18/14	

 Sequence Algorithms	

 6	

Generalizing Pre- and Postconditions	

•  Finding the minimum of a sequence. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

x is min of this segment 	

0 j n	

inv: b	

 ?	

(values in 0..n ���
 are unknown)	

(values in j..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

>= 0	

11/18/14	

 Sequence Algorithms	

 7	

Generalizing Pre- and Postconditions	

•  Finding the minimum of a sequence. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

x is min of this segment 	

0 j n	

inv: b	

 ?	

(values in 0..n ���
 are unknown)	

(values in j..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

>= 0	

pre: j = 0	

post: j = n	

11/18/14	

 Sequence Algorithms	

 8	

Generalizing Pre- and Postconditions	

•  Finding the minimum of a sequence. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

x is min of this segment 	

0 j n	

inv: b	

 ?	

(values in 0..n ���
 are unknown)	

(values in j..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

(values in k..j ���
 are unknown)	

>= 0	

0 k j n	

inv: b	

 ?	

 >= 0	

< 0	

pre: j = 0	

post: j = n	

11/18/14	

 Sequence Algorithms	

 9	

Generalizing Pre- and Postconditions	

•  Finding the minimum of a sequence. 	

•  Put negative values before nonnegative ones. 	

 ? and n >= 0 	

0 n 	

pre: b	

x is the min of this segment 	

0 n	

post: b	

x is min of this segment 	

0 j n	

inv: b	

 ?	

(values in 0..n ���
 are unknown)	

(values in j..n ���
 are unknown)	

 ? and n >= 0 	

0 n 	

pre: b	

< 0	

0 k n	

post: b	

(values in 0..n ���
 are unknown)	

(values in k..j ���
 are unknown)	

>= 0	

0 k j n	

inv: b	

 ?	

 >= 0	

< 0	

pre: j = 0	

post: j = n	

pre: k = 0, ���
 j = n	

post: k = j	

11/18/14	

 Sequence Algorithms	

 10	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 3 5 4 1 6 2 3 8 1 	

b	

h k	

change:	

into	

 1 2 1 3 5 4 6 3 8	

b	

h i k	

 •  x is called the pivot value	

§  x is not a program variable 	

§  denotes value initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

11/18/14	

 Sequence Algorithms	

 11	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 3 5 4 1 6 2 3 8 1 	

b	

h k	

change:	

into	

 1 2 1 3 5 4 6 3 8	

b	

h i k	

 1 2 3 1 3 4 5 6 8	

b	

h i k	

or	

•  x is called the pivot value	

§  x is not a program variable 	

§  denotes value initially in b[h] 	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

11/18/14	

 Sequence Algorithms	

 12	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

11/18/14	

 Sequence Algorithms	

 13	

Partition Algorithm	

•  Given a sequence b[h..k] with some value x in b[h]:	

•  Swap elements of b[h..k] and store in j to truthify post:	

	

 x ?	

 h k	

pre: b	

 <= x x >= x 	

 h i i+1 k	

post: b	

 <= x x ? >= x 	

 h i j k	

inv: b	

•  Agrees with precondition when i = h, j = k+1	

•  Agrees with postcondition when j = i+1 	

11/18/14	

 Sequence Algorithms	

 14	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

11/18/14	

 Sequence Algorithms	

 15	

partition(b,h,k), not partition(b[h:k+1])	

Remember, slicing always copies the list!	

We want to partition the original list	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

11/18/14	

 Sequence Algorithms	

 16	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

11/18/14	

 Sequence Algorithms	

 17	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

1 2 1 3 5 0 6 3 8	

h i i+1 j k	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

11/18/14	

 Sequence Algorithms	

 18	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

1 2 1 3 5 0 6 3 8	

h i i+1 j k	

1 2 1 3 0 5 6 3 8	

h i j k	

Partition Algorithm Implementation	

def partition(b, h, k):

 """Partition list b[h..k] around a pivot x = b[h]"""

 i = h; j = k+1; x = b[h]

 # invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x

 while i < j-1:

 if b[i+1] >= x:

 # Move to end of block.

 _swap(b,i+1,j-1)

 j = j - 1

 else: # b[i+1] < x

 _swap(b,i,i+1)

 i = i + 1

 # post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x

 return i

	

11/18/14	

 Sequence Algorithms	

 19	

1 2 3 1 5 0 6 3 8	

h i i+1 j k	

 <= x x ? >= x	

1 2 1 3 5 0 6 3 8	

h i i+1 j k	

1 2 1 3 0 5 6 3 8	

h i j k	

1 2 1 0 3 5 6 3 8	

h i j k	

Dutch National Flag Variant	

•  Sequence of integer values	

§  ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive	

§  Only rearrange part of the list, not all	

? 	

h k	

pre: b	

 < 0 = 0 > 0 	

h k	

post: b	

inv: b < 0 ? = 0 > 0	

h t i j k	

11/18/14	

 Sequence Algorithms	

 20	

Dutch National Flag Variant	

•  Sequence of integer values	

§  ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive	

§  Only rearrange part of the list, not all	

? 	

h k	

pre: b	

 < 0 = 0 > 0 	

h k	

post: b	

inv: b < 0 ? = 0 > 0	

h t i j k	

pre: t = h, ���
 i = k+1,	

 j = k	

post: t = i	

11/18/14	

 Sequence Algorithms	

 21	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

 t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 swap(b,i-1,t)

 t = t+1

 elif b[i-1] == 0:

 i = i-1

 else:

 swap(b,i-1,j)

 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

11/18/14	

 Sequence Algorithms	

 22	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

 t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 swap(b,i-1,t)

 t = t+1

 elif b[i-1] == 0:

 i = i-1

 else:

 swap(b,i-1,j)

 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

11/18/14	

 Sequence Algorithms	

 23	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

 t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 swap(b,i-1,t)

 t = t+1

 elif b[i-1] == 0:

 i = i-1

 else:

 swap(b,i-1,j)

 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

11/18/14	

 Sequence Algorithms	

 24	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

-1 -2 -1 3 0 0 0 6 3	

h t i j k	

Dutch National Flag Algorithm	

def dnf(b, h, k):

 """Returns: partition points as a tuple (i,j)"""

 t = h; i = k+1, j = k;

 # inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

 while t < i:

 if b[i-1] < 0:

 swap(b,i-1,t)

 t = t+1

 elif b[i-1] == 0:

 i = i-1

 else:

 swap(b,i-1,j)

 i = i-1; j = j-1

 # post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

 return (i, j)

11/18/14	

 Sequence Algorithms	

 25	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

-1 -2 3 -1 0 0 0 6 3	

h t i j k	

 < 0 ? = 0 > 0	

-1 -2 -1 3 0 0 0 6 3	

h t i j k	

-1 -2 -1 0 0 0 3 6 3	

h t j k	

Will Finish This Next Week	

11/18/14	

 Sequence Algorithms	

 26	

