
11/9/14	

1	

Announcements for This Lecture	

Assignments	

 Prelim 2	

•  Thursday, 7:30-9pm	

§  A–Sh (Statler Aud)	

§  Si–X (Statler 196)	

§  Y–Z (Statler 198)	

§  SDS received e-mail	

•  Make-up is Friday	

§  Only if submitted conflict	

§  Also received e-mail	

•  Graded on Saturday	

•  A6 due in one week	

§  Dataset should be done	

§  Get on track this weekend	

§  Next Week: ClusterGroup	

•  A7 will be last assignment	

§  Due after classes over	

§  Posted before Thanksgiving	

§  Lab next week	

•  No lab week of Turkey Day	

Recall: Important Terminology	

•  assertion: true-false statement placed in a program to
assert that it is true at that point	

§  Can either be a comment, or an assert command	

•  invariant: assertion supposed to "always" be true 	

§  If temporarily invalidated, must make it true again	

§  Example: class invariants and class methods	

•  loop invariant: assertion supposed to be true before
and after each iteration of the loop	

•  iteration of a loop: one execution of its body	

Recall: Preconditions & Postconditions	

•  Precondition: assertion
placed before a segment	

•  Postcondition: assertion
placed after a segment ���
	

x = sum of 1..n-1

x = x + n

n = n + 1

x = sum of 1..n-1

precondition	

postcondition	

1 2 3 4 5 6 7 8 	

x contains the sum of these (6)	

n	

n	

1 2 3 4 5 6 7 8 	

x contains the sum of these (10)	

Relationship Between Two	

	

If precondition is true, then
postcondition will be true	

Solving a Problem	

x = sum of 1..n

n = n + 1

x = sum of 1..n

precondition	

postcondition	

	

What statement do you ���
put here to make the
postcondition true?	

A: x = x + 1	

B: x = x + n	

C: x = x + n+1	

D: None of the above	

E: I don’t know	

Invariants: Assertions That Do Not Change	

x = 0; i = 2

while i <= 5:

x = x + i*i

 i = i +1

x = sum of squares of 2..5

	

Invariant:	

	

x = sum of squares of 2..i-1	

 in terms of the range of integers
that have been processed so far	

i = 2	

i <= 5	

i = i +1	

true	

false	

x = x + i*i	

The loop processes the range 2..5	

# invariant	

•  Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)	

Invariants: Assertions That Do Not Change	

x = 0; i = 2

Inv: x = sum of squares of 2..i-1

while i <= 5:

 x = x + i*i

 i = i +1

Post: x = sum of squares of 2..5

	

	

i = 2	

i <= 5	

i = i +1	

true	

false	

x = x + i*i	

The loop processes the range 2..5	

# invariant	

x 	

 0	

i 	

 ?	

Integers that have 	

been processed:	

	

Range 2..i-1: 	

11/9/14	

2	

Invariants: Assertions That Do Not Change	

x = 0; i = 2

Inv: x = sum of squares of 2..i-1

while i <= 5:

 x = x + i*i

 i = i +1

Post: x = sum of squares of 2..5

	

	

i = 2	

i <= 5	

i = i +1	

true	

false	

x = x + i*i	

The loop processes the range 2..5	

# invariant	

x 	

 0	

i 	

 ?	

 2	

4	

3	

13	

4	

29	

5	

54	

6	

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates	

Integers that have 	

been processed:	

	

Range 2..i-1: 	

 2..1 (empty)	

2	

2..2 	

, 3	

2..3	

, 4	

2..4	

, 5	

2..5	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

✗	

Designing Integer while-loops	

Process integers in a..b

inv: integers in a..k-1 have been processed

k = a

while k <= b:

 process integer k

 k = k + 1

post: integers in a..b have been processed

	

Command to do something 	

Equivalent postcondition 	

true	

init	

 cond	

k= k +1;	

false	

Process k	

invariant	

invariant	

Designing Integer while-loops	

1.  Recognize that a range of integers b..c has to be processed	

2.  Write the command and equivalent postcondition	

3.  Write the basic part of the while-loop	

4.  Write loop invariant	

5.  Figure out any initialization	

6.  Implement the repetend (process k)	

Process b..c

Initialize variables (if necessary) to make invariant true

Invariant: range b..k-1 has been processed

while k <= c:

 # Process k

 k = k + 1

Postcondition: range b..c has been processed

	

	

Finding an Invariant	

Make b True if no int in 2..n-1 divides n, False otherwise

b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:

Process k;

if n % k == 0:

 b = False

 k = k +1

b is True if no int in 2..n-1 divides n, False otherwise

	

What is the invariant?	

•  // b = “no int in 2..n-1 divides n”	

1 2 3 … k-1 k k+1 … n	

Command to do something 	

Equivalent postcondition 	

Finding an Invariant	

set x to # adjacent equal pairs in s[0..len(s)-1]

x = 0

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):

 # Process k

 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 	

Equivalent postcondition 	

for s = 'ebeee', x = 2	

A: k = 0	

B: k = 1	

C: k = –1	

D: I don’t know	

k: next integer to process.���
What is initialization for k?	

Reason carefully about initialization	

s is a string; len(s) >= 1

Set c to largest element in s

c = ??

k = ??

inv:

while k < len(s):

 # Process k

 k = k+1

c = largest char in s[0..len(s)–1]

	

1.  What is the invariant?	

2.  How do we initialize c and k?	

c is largest element in s[0..k–1]	

Command to do something 	

Equivalent postcondition 	

A: k = 0; c = s[0]

B: k = 1; c = s[0]

C: k = 1; c = s[1]

D: k = 0; c = s[1]

E: None of the above	

