
11/9/14	

1	

Beyond Sequences: The while-loop

while <condition>:

 statement 1

 …

 statement n

	

•  Relationship to for-loop

§  Broader notion of
“still stuff to do”

§  Must explicitly ensure
condition becomes false	

§  You explicitly manage
what changes per iteration	

condition	

true	

false	

repetend	

repetend or body	

While-Loops and Flow	

print 'Before while'

count = 0

i = 0

while i < 3:

 print 'Start loop '+str(i)

count = count + i

i = i + 1

print 'End loop '

print 'After while'

Output:
Before while

Start loop 0

End loop

Start loop 1

End loop

Start loop 2

End loop

After while

	

	

while Versus for

 # process range b..c-1

 for k in range(b,c)

 process k

 # process range b..c-1

 k = b

 while k < c:

 process k

 k = k+1

Must remember to increment	

 # process range b..c

 for k in range(b,c+1)

 process k

 # process range b..c

 k = b

 while k <= c:

 process k

 k = k+1

Note on Ranges	

•  m..n is a range containing n+1-m values	

§  2..5 contains 2, 3, 4, 5. 	

Contains 5+1 – 2 = 4 values	

§  2..4 contains 2, 3, 4. 	

 	

Contains 4+1 – 2 = 3 values 	

§  2..3 contains 2, 3. 	

 	

Contains 3+1 – 2 = 2 values	

§  2..2 contains 2. 	

 	

Contains 2+1 – 2 = 1 values	

§  2..1 contains ???	

•  The notation m..n, always implies that m <= n+1	

§  So you can assume that even if we do not say it	

§  If m = n+1, the range has 0 values	

Patterns for Processing Integers	

range a..b-1	

i = a

while i < b:

 process integer I	

 i = i + 1	

store in count # of '/'s in String s

count = 0

i = 0

while i < len(s):

 if s[i] == '/':

 count= count + 1

 i= i +1

count is # of '/'s in s[0..s.length()-1]

range c..d	

i= c

while i <= d:

 process integer I	

 i= i + 1

Store in double var. v the sum

1/1 + 1/2 + …+ 1/n

v = 0; # call this 1/0 for today

i = 0

while i <= n:

 v = v + 1.0 / i

 i= i +1

v= 1/1 + 1/2 + …+ 1/n

while Versus for

 # table of squares to N

 seq = []

 n = floor(sqrt(N)) + 1

 for k in range(n):

 seq.append(k*k)

 # table of squares to N

 seq = []

 k = 0

 while k*k < N:

 seq.append(k*k)

 k = k+1

A for-loop requires that ���
you know where to stop
the loop ahead of time 	

A while loop can use
complex expressions to
check if the loop is done	

11/9/14	

2	

while Versus for

Table of n Fibonacci nums

fib = [1, 1]

for k in range(2,n):

 fib.append(fib[-1] + fib[-2])

Table of n Fibonacci nums

fib = [1, 1]

while len(fib) < n:

 fib.append(fib[-1] + fib[-2])

Sometimes you do not use ���
the loop variable at all	

Do not need to have a loop	

variable if you don’t need one	

Fibonacci numbers:	

	

F0 = 1	

	

F1 = 1	

	

Fn = Fn–1 + Fn–2	

Cases to Use while

Remove all 3's from list t

i = 0

while i < len(t):

 # no 3’s in t[0..i–1]

 if t[i] == 3:

 del t[i]

 else:

 i += 1

 # Remove all 3's from list t

 while 3 in t:

 t.remove(3)

Great for when you must modify the loop variable	

Stopping
point keeps
changing.	

The stopping condition is not
a numerical counter this time.	

Simplifies code a lot.	

Cases to Use while	

•  Want square root of c	

§  Make poly f(x) = x2-c 	

§  Want root of the poly���

(x such that f(x) is 0)	

•  Use Newton’s Method	

§  x0 = GUESS (c/2??)	

§  xn+1 = xn – f(xn)/f'(xn)	

 = xn – (xnxn-c)/(2xn)	

 = xn – xn/2 + c/2xn	

 = xn/2 + c/2xn	

§  Stop when xn good enough	

	

def sqrt(c):

 """Return: square root of c

 Uses Newton’s method

 Pre: c >= 0 (int or float)"""

 x = c/2

 # Check for convergence

 while abs(x*x – c) > 1e-6:

 # Get xn+1 from xn

 x = x / 2 + c / (2*x)

 return x

Recall Lab 9	

Welcome to CS 1110 Blackjack.

Rules: Face cards are 10 points. Aces are 11 points.

 All other cards are at face value.

Your hand:

2 of Spades

10 of Clubs

Dealer's hand:

5 of Clubs

Type h for new card, s to stop:

Play until player 	

stops or busts	

How do we design a complex
while-loop like this one?	

Some Important Terminology	

•  assertion: true-false statement placed in a program to
assert that it is true at that point	

§  Can either be a comment, or an assert command	

•  invariant: assertion supposed to "always" be true 	

§  If temporarily invalidated, must make it true again	

§  Example: class invariants and class methods	

•  loop invariant: assertion supposed to be true before
and after each iteration of the loop	

•  iteration of a loop: one execution of its body	

Preconditions & Postconditions	

•  Precondition: assertion
placed before a segment	

•  Postcondition: assertion
placed after a segment ���
	

x = sum of 1..n-1

x = x + n

n = n + 1

x = sum of 1..n-1

precondition	

postcondition	

1 2 3 4 5 6 7 8 	

x contains the sum of these (6)	

n	

n	

1 2 3 4 5 6 7 8 	

x contains the sum of these (10)	

Relationship Between Two	

	

If precondition is true, then
postcondition will be true	

