Announcements for Today

11/2/14

Reading

Assignments

e Today: Chapter 18
* Online reading for Thursday

¢ Prelim, Nov 13t 7:30-9:00
= Material up to Thursday
= Review posted on Thursday
= Recursion + Loops + Classes
¢ S/U Students are exempt
« Conflict with Prelim time?
= Prelim 2 Conflict on CMS
= Submit by Thursday

* A4 graded by end of week
= Survey is still open
¢ AS was posted Friday
= Shorter written assignment
= Due Thursday at Midnight
* A6 was posted yesterday
= Due a week after prelim
= Designed to take two weeks
= Finish first part before exam

An Application

e Goal: Presentation program (e.g. PowerPoint)
e Problem: There are many types of content

= Examples: text box, rectangle, image, etc.

= Have to write code to display each one
e Solution: Use object oriented features

= Define class for every type of content

= Make sure each has a draw method:

for x in slide[i].contents:
| x.draw(window)

W Defining a Subclass
as SC to right

. L . Superclass
class SlideContent(object): Parent class SlideContent
"""Any object on a slide."" Base class
def __init__(self, x,y, w, h): ...
def draw_frame(self): ... Subclass
def select(self): ... Child class TextBox fmage

Derived class

class TextBox(SlideContent):
"""An object containing text.""
def __init_ (self, x, y, text): ...
def draw(self): ...

class Image(SlideContent):
AR fmage. "™

def __init__(self, x, y, image_file): ...
def draw(self): ...

Class Definition: Revisited

class <name>(<superclass>):

nmn, i i nm
Class specification T

getters and setters (may need module name)

initializer (__init_)

* Every class must
extend something

definition of operators

 Previous classes all

definition of methods extended object

anything else

object and the Subclass Hierarcy

* Subclassing creates a
hierarchy of classes
= Each class has its own
super class or parent
= Until object at the “top”

* object has many features
= Special built-in fields:
_ class__,__diet__
= Default operators:
_str__,__repr

kivy.uix.butto:

Kivy Example
object
kivy.uix.widge.WidgetBase
kivy.uix.widget.Widget
kivy.uix.label.Label

Name Resolution Revisited

e To look up attribute/method name

p-select()

1. Look first in instance (object folder)
2. Then look in the class (folder)
* Subclasses add two more rules:
3. Look in the superclass
4. Repeat 3. until reach object

-TextBox
p text

R

A Simpler Example

11/2/14

class Employee(object):

"""Instance is salaried worker

INSTANCE ATTRIBUTES:
name [string]: full name

first year hired
salary [float]: yearly wage""

class Executive(Employee):
"""An Employee with a bonus
INSTANCE ATTRIBUTES:

bonus [float]: annual bonus™"

start [int =-1,-1 if unknown]:

Method Overriding

* Which __str__ do we use?
= Start at bottom class folder
= Find first method with name

= Use that definition
* New method definitions
override those of parent
* Also applies to
= Initializers
= Operators

= Properties

all “methods”

Accessing the “Previous” Method

What if you want to use the
original version method?
= New method = original+more

= Do not want to repeat code
from the original version

Call old method explicitly

= Use method as a function

= Pass object as first argument
Example:

Employee.__str__(self)
Cannot do with properties

class Employee(object):
"""An Employee with a salary""

def __str__ (self):
return (self.name +
!, year ' + str(self.start) +
', salary ' + str(self.salary))

class Executive(Employee):
"""An Employee with a bonus.""

def __str__ (self):
return (Employee.__str__(self)
+', bonus ' + str(self.bonus))

Primary Application: Initializers

class Employee(object):

def __init__(self,n,d,s=50000.0):
self._name=n
self._start = d
self._salary = s

class Executive(Employee):

def __init__(self,n,d,b=0.0):
‘ Employee.__init__(self,n,d)
self._bonus = b

Instance Attributes are (Often) Inherited

class Employee(object):

def __init__(self,n,d,s=50000.0):
self._name =n

self._start =d

self._salary = s

class Executive(Employee):

def __init__(self,n,d,b=0.0):
‘ Employee.__init__(self,n,d)
self._bonus = b

id4

name
s
salary

bonus

Created in
Employee
initializer

Created in
Executive
initializer

Also Works With Class Attributes

Class Attribute: Assigned outside of any method definition

class Employee(object):
"""Instance is salaried worker""
Class Attribute
STD_SALARY = 50000.0

class Executive(Employee):
"""An Employee with a bonus.""”
Class Attribute
STD_BONUS = 10000.0

