
Using Classes Effectively	

Lecture 18 	

	

Announcements	

Reading	

•  Tuesday: Chapter 18	

•  Thursday reading online	

•  Due Sunday at Midnight	

•  Probably no Saturday hours	

•  Consultants all day Sunday	

Regrades	

•  Show exam to lab instructor	

§  Or to me after class	

§  They will verify if valid	

•  Then request regrade in CMS	

10/30/14	

 Using Classes Effectively	

 2	

•  Prelim, Nov 13th 7:30-9:00	

§  Material up to November 6	

§  Recursion + Loops + Classes	

•  S/U Students are exempt	

•  Conflict with Prelim time?	

§  Prelim 2 Conflict on CMS	

Assignment 4	

•  Type: set of values and the operations on them	

§  int: (set: integers; ops: +, –, *, /, …)	

§  Time (set: times of day; ops: time span, before/after, …)	

§  Worker (set: all possible workers; ops: hire,pay,promote,…)	

§  Rectangle (set: all axis-aligned rectangles in 2D; ���

 ops: contains, intersect, …)	

•  To define a class, think of a real type you want to make	

§  Python gives you the tools, but does not do it for you	

§  Physically, any object can take on any value	

§  Discipline is required to get what you want	

Designing Types	

 From first ���
day of class!	

10/30/14	

 Using Classes Effectively	

 3	

Making a Class into a Type	

1.  Think about what values you want in the set	

§  What attributes? What values can they have?	

2.  Think about what operations you want	

§  Often influences the previous question	

•  To make (1) precise: write a class invariant	

§  Statement we promise to keep true after every method call	

•  To make (2) precise: write method specifications	

§  Statement of what method does/what it expects (preconditions)	

•  Write your code to make these statements true!	

10/30/14	

 Using Classes Effectively	

 4	

Planning out a Class	

class Time(object):

 """Instances represent times of day.

 Instance Attributes:

 hour: hour of day [int in 0..23]

 min: minute of hour [int in 0..59]"""

 def __init__(self, hour, min):

 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59"""

 def increment(self, hours, mins):

 """Move this time <hours> hours

 and <mins> minutes into the future.

 Pre: hours is int >= 0; mins in 0..59"""

 def isPM(self):

 """Returns: this time is noon or later."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Time instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

5	

Planning out a Class	

class Rectangle(object):

 """Instances represent rectangular�
 regions of the plane.

 Instance Attributes:

 t: y coordinate of top edge [float]�
 l: x coordinate of left edge [float]�
 b: y coordinate of bottom edge [float] �
 r: x coordinate of right edge [float]

 For all Rectangles, l <= r and b <= t."""

 def __init__(self, t, l, b, r):

 """The rectangle [l, r] x [t, b]�
 Pre: args are floats; l <= r; b <= t"""

 def area(self):

 """Return: area of the rectangle."""

 def intersection(self, other):

 """Return: new Rectangle describing �
 intersection of self with other."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Rectangle instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

6	

Planning out a Class	

class Hand(object):

 """Instances represent a hand in cards.

 Instance Attributes:

 cards: cards in the hand [list of card]

 This list is sorted according to the�
 ordering defined by the Card class."""

 def __init__(self, deck, n):

 """Draw a hand of n cards.�
 Pre: deck is a list of >= n cards"""

 def isFullHouse(self):

 """Return: True if this hand is a full �
 house; False otherwise"""

 def discard(self, k):

 """Discard the k-th card."""

Class Invariant	

States what attributes are present
and what values they can have.	

A statement that will always be
true of any Rectangle instance.	

Method Specification	

States what the method does.	

Gives preconditions stating what ���
is assumed true of the arguments.	

10/30/14	

 Using Classes Effectively	

 7	

Implementing a Class	

•  All that remains is to fill in the methods. (All?!)	

•  When implementing methods:	

1.  Assume preconditions are true	

2.  Assume class invariant is true to start	

3.  Ensure method specification is fulfilled	

4.  Ensure class invariant is true when done	

•  Later, when using the class:	

§ When calling methods, ensure preconditions are true	

§  If attributes are altered, ensure class invariant is true	

10/30/14	

 Using Classes Effectively	

 8	

Implementing an Initializer	

def __init__(self, hour, min):

"""The time hour:min.�

Pre: hour in 0..23; min in 0..59"""

You put code here	

This is true to start	

This should be true���
at the end	

self.hour = hour

self.min = min

Instance variables:

 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

10/30/14	

 Using Classes Effectively	

 9	

Instance variables:

 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

Implementing a Method	

def increment(self, hours, mins):

"""Move this time <hours> hours

and <mins> minutes into the future.�

Pre: hours [int] >= 0; mins in 0..59"""

You put code here	

This is also true to start	

This should be true���
at the end	

self.min = self.min + min

self.hour = (self.hour + hour +

 self.min / 60)

self.min = self.min % 60

self.hour = self.hour % 24

This is true to start	

What we are supposed���
to accomplish	

Instance variables:

 hour: hour of day [int in 0..23]�
 min: minute of hour [int in 0..59]

10	

Role of Invariants and Preconditions	

•  They both serve two purposes	

§  Help you think through your

plans in a disciplined way	

§  Communicate to the user* how

they are allowed to use the class	

•  Provide the interface of the class	

§  interface btw two programmers	

§  interface btw parts of an app	

•  Important concept for making
large software systems	

§  Will return to this idea in a week	

* …who might well be you!	

in•ter•face |ˈintərˌfās| noun	

1. a point where two systems, subjects,
organizations, etc., meet and interact :
the interface between accountancy and
the law.	

• 	

chiefly Physics a surface forming a
common boundary between two
portions of matter or space, e.g.,
between two immiscible liquids : the
surface tension of a liquid at its air/
liquid interface.	

2. Computing a device or program
enabling a user to communicate with a
computer.	

• 	

a device or program for connecting
two items of hardware or software so
that they can be operated jointly or
communicate with each other.	

—The Oxford American Dictionary	

Implementing a Class	

•  All that remains is to fill in the methods. (All?!)	

•  When implementing methods:	

1.  Assume preconditions are true	

2.  Assume class invariant is true to start	

3.  Ensure method specification is fulfilled	

4.  Ensure class invariant is true when done	

•  Later, when using the class:	

§ When calling methods, ensure preconditions are true	

§  If attributes are altered, ensure class invariant is true	

Easy(ish) if we are the user.	

But what if we aren’t?	

10/30/14	

 Using Classes Effectively	

 12	

Recall: Enforce Preconditions with assert

def anglicize(n):

 """Returns: the anglicization of int n.

�

 Precondition: n an int, 0 < n < 1,000,000"""

 assert type(n) == int, str(n)+' is not an int'

 assert 0 < n and n < 1000000, str(n)+' is out of range'

 # Implement method here…

	

	

	

Check (part of)���
the precondition	

(Optional) Error message ���
when precondition violated	

10/30/14	

 Using Classes Effectively	

 13	

Enforce Method Preconditions with assert

class Time(object):

 """Instances represent times of day."""

 def __init__(self, hour, min):

 """The time hour:min.�
 Pre: hour in 0..23; min in 0..59"""

 assert type(hour) == int

 assert 0 <= hour and hour < 24

 assert type(min) == int

 assert 0 <= min and min < 60

 def increment(self, hours, mins):

 """Move this time <hours> hours

 and <mins> minutes into the future.

 Pre: hours is int >= 0; mins in 0..59""”

 assert type(hour) == int

 assert type (min) == int

 assert hour >= 0 and

 assert 0 <= min and min < 60

Instance Attributes:

 hour: hour of day [int in 0..23]

 min: minute of hour [int in 0..59]

Initializer creates/initializes all ���
of the instance attributes.	

Asserts in initializer guarantee the
initial values satisfy the invariant.	

Asserts in other methods enforce
the method preconditions.	

Hiding Methods From Access	

•  Put underscore in front of a
method will make it hidden	

§  Will not show up in help()

§  But it is still there…	

•  Hidden methods	

§  Can be used as helpers

inside of the same class	

§  But it is bad style to use

them outside of this class	

•  Can do same for attributes	

§  Underscore makes it hidden	

§  Do not use outside of class	

 	

class Fraction(object):

 """Instance attributes:

 numerator: top [int]

 denominator: bottom [int > 0]""" �

 def _is_denominator(self,d):

 """Return: True if d valid denom"""

 return type(d) == int and d > 0

 def __init__(self,n=0,d=1):

 assert self._is_denominator(d)

 self.numerator = n

 self.denominator = d

10/30/14	

 Using Classes Effectively	

 15	

Helper	

method	

HIDDEN	

Enforcing Invariants	

class Fraction(object):

 """Instance attributes:

 numerator: top [int]

 denominator: bottom [int > 0]�
 """

	

	

•  These are just comments!	

>>> p = Fraction(1,2)

>>> p.numerator = 'Hello'

•  How do we prevent this?	

•  Idea: Restrict direct access	

§  Only access via methods	

§  Use asserts to enforce them	

•  Examples:	

def getNumerator(self):

 """Returns: numerator"""

 return self.numerator

def setNumerator(self,value):

 """Sets numerator to value"""

 assert type(value) == int

 self.numerator = value�

Invariants:	

Properties that
are always true.	

10/30/14	

 Using Classes Effectively	

 16	

Data Encapsulation	

•  Idea: Force the user to only use methods	

•  Do not allow direct access of attributes	

Setter Method	

•  Used to change an attribute	

•  Replaces all assignment

statements to the attribute	

•  Bad:	

>>> f.numerator = 5

•  Good:	

>>> f.setNumerator(5)

Getter Method	

•  Used to access an attribute	

•  Replaces all usage of ���

attribute in an expression	

•  Bad:	

>>> x = 3*f.numerator

•  Good:	

>>> x = 3*f.getNumerator()

10/30/14	

 Using Classes Effectively	

 17	

Data Encapsulation	

class Fraction(object):

 """Instance attributes:

 _numerator: top [int]

 _denominator: bottom [int > 0]""" �

 def getDenomenator(self):

 """Returns: numerator attribute"""

 return self._denomenator

 def setDenomenator(self, d):

 """Alters denomenator to be d

 Pre: n is an int > 0"""

 assert type(d) == int

 assert 0 < d

 self._denominator = d

Getter	

Setter	

Precondition is same���
as attribute invariant.	

Naming Convention	

The underscore means ���
“should not access the

attribute directly.”	

Do this for all of
your attributes	

10/30/14	

 Using Classes Effectively	

 18	

Structure of a Proper Python Class	

class Fraction(object):

 """Instances represent a Fraction

 Attributes:

 _numerator: [int]

 _denominator: [int > 0]""" �

 def getNumerator(self):

 """Returns: Numerator of Fraction"""

 …

 def __init__(self,n=0,d=1):

 """Initializer: makes a Fraction"""

 …

 def __add__(self,q):

 """Returns: Sum of self, q"""

 …

 def normalize(self):

 """Puts Fraction in reduced form"""

 …

Docstring describing class	

Attributes are all hidden	

Getters and Setters.	

Initializer for the class.	

Defaults for parameters.	

Python operator overloading	

Normal method definitions	

10/30/14	

 Using Classes Effectively	

 19	

Exercise: Design a (2D) Circle	

• What are the attributes?	

§ What is the bare minimum we need?	

§ What are some extras we might want?	

§ What are the invariants?	

• What are the methods?	

§ With just the one circle?	

§ With more than one circle?	

10/30/14	

 Using Classes Effectively	

 20	

Properties: Invisible Setters and Getters	

class Fraction(object):

 """Instance attributes:

 _numerator: [int]

 _denominator: [int > 0]"""

 @property

 def numerator(self):

 """Numerator value of Fraction�
 Invariant: must be an int"""

 return self._numerator

 @numerator.setter

 def numerator(self,value):

 assert type(value) == int

 self._numerator = value	

>>> p = Fraction(1,2)

>>> x = p.numerator

>>> x = p.numerator()

>>> p.numerator = 2

>>> p.numerator(2)

Python ���
converts to	

Python ���
converts to	

10/30/14	

 Using Classes Effectively	

 21	

Properties: Invisible Setters and Getters	

class Fraction(object):

 """Instance attributes:

 _numerator: [int]

 _denominator: [int > 0]"""

 @property

 def numerator(self):

 """Numerator value of Fraction�
 Invariant: must be an int"""

 return self._numerator

 @numerator.setter

 def numerator(self,value):

 assert type(value) == int

 self._numerator = value	

Specifies that next method is
the getter for property of the

same name as the method	

Docstring describing property	

Property uses hidden attribute.	

Specifies that next method is
the setter for property whose

name is numerator.	

10/30/14	

 Using Classes Effectively	

 22	

Properties: Invisible Setters and Getters	

class Fraction(object):

 """Instance attributes:

 _numerator: [int]

 _denominator: [int > 0]"""

 @property

 def numerator(self):

 """Numerator value of Fraction�
 Invariant: must be an int"""

 return self._numerator

 @numerator.setter

 def numerator(self,value):

 assert type(value) == int

 self._numerator = value	

Only the getter is required!	

If no setter, then the ���
attribute is “immutable”.	

Goal: Data Encapsulation	

Protecting your data from ���

other, “clumsy” users.	

Replace Attributes w/ Properties 	

(Users cannot tell difference)	

10/30/14	

 Using Classes Effectively	

 23	

